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ESTIMATION IN PARAMETRIC PROBLEMS
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Evaluation of estimators:
Casella and Berger, Chapters 7 and 10
Hansen I, Chapter 6
Asymptotics for the sample mean:
Goldberger, Chapter 9
Hansen I, Chapters 7 and 8
Maximum likelihood:
Davidson and MacKinnon, Chapter 8
Hansen I, Chapter 10
Wooldridge, Chapter 13
Linear regression:
Goldberger, Chapters 14-16
Hansen II, Chapters 2-5
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We are interested in saying something about a population based on a sample
T1yeenyTn
from it. The x; may be scalars or vectors.
Want to learn some feature of the population, say 6; the estimand.
For that we use an estimator
On = 0n(z1,...,%0);
this is just a function of the sample (it can be any function).
Some questions:

m How do we evaluate estimators, i.e., what is a good estimator?
m How do we construct good estimators?

m Does there exist a best estimator and, if so, is it unique?

This inferential aim is different from a descriptive data analysis that gives
means, variances, correlations, regression coefficients, and so on.
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The parametric framework

A way to formalize sampling is to see z1,. ..,z as a draw from an (n-variate)
probability (mass or density) function, g.

We begin with the random sampling and the parametric framework.

The sample is a random sample if

the z; are independent across i, so that g(z1,...,@n) =[], fi(z:)
for probability functions fi,..., fn; and

all x; are identically distributed, so that f; = f for some f and all 7.
We say that the z; are i.i.d.
The parametric framework says that f = fg is known up to parameter 0
which is finite dimensional (and so is a vector, in general).

That is, we know the class
{f9 10 e @},
but not the particular 6 that generated the data.
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We know the whole probability distribution once we know the parameter 6.

We may calculate Py(x; € A) = [, fo(x) dx for any set A. For example,
Fy(z) = Pp(xi € (—00,7]) = Pp(w; < )

for any z (the cumulative distribution function).

We know all raw and centered moments; for example, the mean and variance
Eo(z:) = [@ fo(x)dz,  vare(z:) = [(z — Eo(z:)) (x — Eo(x:))" fo() de,
and so on.

We know Ejy(p(z;)) for any chosen function ¢ and so also parameters
defined through

Eo(p(zi;9)) =0,
(which we call moment conditions). Obvious example is ¢ = Ey(z;), which
has o(zi;9) = 2 — 1.
For univariate z; the Tth-quantile is ¢, = inf,{q : Fyp(q) > 7}, for 7 € (0,1).

It is a solution to the moment condition Ep({z; < ¥} — 7) = 0 and so has

p(wis ) = {z; <Y} —7.
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Let z1,...,x, be a sequence of zeros and ones with Pyp(xz; = 1) = 6. Then
x; is Bernoulli with mass function

fg(fl}) =06" (1_0)1_z7 XS (01 1)7
for x € {0,1}.
One possible (and sensible) estimator of § would be the sample frequency of

ones, i.e., Tn =n" 'Y "

Another simple example has z1,...,z, representing the number of arrivals
per unit of time. The Poisson distribution has
0* e~

fo(z) = Po(zi =) = g 0>0

for z € N.
0 is the arrival rate, i.e., the expected number of arrivals per time unit.

A sensible estimator of § is again the sample mean.
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We have data on the number of births per hour over a 24 hour period in
Addenbrooke’s.

Fitting a Poisson model to such data we estimate the number of births per
hour by the sample mean, here 1.875 births/hour.

Given an estimate of § we can estimate the mass function.

Poisson fit (blue = model; black = actual)
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The hospital data also tell us that, of the 44 babies, 18 were boys and 26
where girls.

The maximum likelihood estimator of the probability of giving birth to a boy
is 18/44 = .409.

The estimator is a random variable.

Using arguments to be developed later we can test whether there is a gender
bias at Addenbrooke’s.

The standard error on our estimate is 1/(18/44) x (26/44)/44 = .074 which

gives us the value
409 —.500

=-1.23
.074
for a test statistic which is (asymptotically) standard normal under the null
of no gender bias.

Using a Neyman-Pearson argument (see later) we cannot reject the absence
of gender bias (at conventional significance levels).
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A continuous example with two parameters is the normal distribution.

The univariate standard-normal density is

it has mean zero and variance one. The corresponding distribution function
is

d(z) = ffooqb(u) du.

The normal distribution is a location/scale family:
If z; ~ N(0,1), then
T =p+ oz~ N(,u,aQ).

Its cumulative distribution function is

pl o =r (54 < (751)

and its density function is

1 ”—N)_ L -3e-w?/e?
Jd)( € '

g

V2mo?

Obvious estimators for p, o2 would be the sample mean and sample variance.
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Less obvious is when
* 2
Ty ~ N(:uv 4 )

but we observe
x; ifzf >0
Ty = . *
0 ifzf<0

This is a censored normal variable.
How would we estimate the parameters here?

Some obvious candidates would be

the sample mean and variance of the x;;

the sample mean and variance of the positive x;.

These turn out not to be very attractive and should not be used.

We will construct a better estimator later on.
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As a final example, suppose that z; ~ x2.
The Chi-squared distribution with (integer) 6 degrees of freedom has density
20/2-1 g—a/2

fo(z) = m,

where I'(0) = [*° 27! e™* dz denotes the Gamma function at .

0

We note without proof that
E9 (CL’Z) = 0,
varg(x;) = 20,

Eo(a?) = 2°T(p + 0/2)/T(0/2).

It follows that the sample mean is an obvious candidate estimator of 6.

But there is also information in higher-order moments so the sample mean
may be inefficient (it is here but it need not be, a priori; see the Poisson
example).
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Change of variable

Let x be a random variable with density f. Let y = () for an invertible
function .

The density of y is
- )
1
o™ ) faer (201,
Easiest to see in the univariate case:

If ¢ is increasing,

by the chain rule.

If ¢ is decreasing, P(y < a) = 1 — P(z < ¢~ %(a)), and differentiation gives
—fle™Ha) (87 () /0], _,)-

13 / 318



Characteristic function

Let = be a continuous univariate random variable with density f. Then
p(t) = B(e™) = [e* f(z) da

is its characteristic function. (Here, ¢ is the imaginary unit, i.e., 1> = —1)

So, ¢ is the Fourier transform of f.

Like f, ¢ completely characterizes the random variable.

f can be recovered from ¢ through the inverse Fourier transform
-
= — YT o(t) dt.
f@) = 5- e o)

Further, raw moments equal

_ —p 9%0(t)
E(@?)y=."7 Der

t=0

For multivariate x, ¢(t) = E(e”,z) for a vector ¢ of conformable dimension.
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An example is the standard normal case. Here,
673:2/2
Vo

We have, using the definition of the cosine function,

@) = Pty =712,

S@(t) = 4:;71_ f‘_”zebtz 6712/2 f+00 1 Ltz + e*btl) 6712/2 dx
rf :

cos(tx) e /2 dg.

Next,

9 cos(t —z?
cos(z e z/2dm

“+oo
@' ( \/ﬂf

= rfo sin(tz) x Z2/2dw
2 ( —a2/2 . )‘4—00 7$2/2
=— |e sin(tx t cos(tz) dx
N )]} - =y
= —tp(t).

This implies that ¢ o e~*"/2. But because J f(z) dz = 1 we must have that

_ : __—t?)2
©(0) = 1 so that, indeed, ¢ = e . 15/ 318



To see that 1
+oo itz —t2
¢($):§f,ooe et/ dt,

we can use the same calculations.
Moreover, note that
ifﬂ)oef””seftz/2 dt = leroo cos(ta:)efﬂ/2 dt
o —oo — xJo
by the same argument as before. We have already computed the last integral.
Moreover,

1 o) —t2 T —z?
- ;r cos(tr)e " /2 dt = L (Tz go(x)) :\/%e v = (),

as claimed.
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Squared standard-normal variable

Let z ~ N(0,1). Then the density of x = 2% at a > 0 is

eVa) +o(=va) _ 1 (L(;%a + Lﬁa) -
2va 2va \Var Var Vam/a

This is the density of a x? random variable. Indeed, use that I'(1/2) = /7
to rewrite the density as

1 1

5(1

1 e*%u _ a1/2—167a/2 B a1/2—167a/2
V2m/a ooy 21/21(1/2)

which co-incides with the definition given above.
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Sum of squared independent standard-normal variables

The characteristic function of a Xf,—variable is
ep(t) = (1 — 2ut) "2
So, if
Zi ~ N(O, 1),
then 27 ~ x? has @1 (t) = (1 — 2ut)~ /2.

The characteristic function of 3.7 | z7 is (by independence) equal to

Hgal (1_2@ 1/2)” = (1—2)""% = o, (t).

Hence,

n
2 2
i=1
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Sum of independent normal variables

The characteristic function of a N(u,c?) variable is

+2

Lt,u70'27 .

Puo2(t) =e
So, if
zZi ~ ]\/v(O7 1)
are independent the characteristic function of Z?:l zi 1is

n n

42 _t2/9\n 2
[Teoa@® =T ") = (") =e "2 = pon(t),
=1

i=1

ie, >z~ N(O,n).

By the location/scale properties of the normal we then have that
Zn ~ N(0,n7")

and

Ty = b+ 0 Zp ~ N(,u,UQ/n).
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Motivating best unbiasedness

Sampling distributions of several estimators.

Blue is better than red.

0.4
0.3
0.2 4

0.1
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Best unbiased estimator

An estimator 6, is best unbiased if Fy(6,) = 6 and
varg(0,) < varg(6)
for any other unbiased estimator ..

Here and later, the inequality is to be interpreted in the matrix sense: A > 0
means that matrix A is positive semi-definite, i.e., ’Ax > 0 for any real
non-zero vector x.

A lower bound on the variance can be found.

This is called an efficiency bound; here: Cramér-Rao bound.

Very often such an estimator will not exist.

If it exists, it is unique.
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Non-existence of bias

The Cauchy distribution with location p and scale v has the symmetric

density
1

™y (1 + (z;u)Q) '

For example, with ¢ = 0 and v = 1 we have

It has no moments.

E(|J§|) hm 2]0 p 1+12 dx = limar— M = +00.

So it is not useful to estimate the location parameter p via the sample mean.
A sensible estimator would be the sample median, which is well defined in
spite of the non-existence of moments.

So, if an estimator is Cauchy distributed its bias does not exist.

An example where this happens is with ratios of normal variates, as these
are Cauchy.

22 / 318



Ratio of normals

Take independent scalar normal variates = ~ N(0,01) and y ~ N (0, 03).

Consider the transformation (z,y) — (u,v) = (z/y,y). The Jacobian of the
transformation is v and so the density of u is

foron(u) = f‘fzz ¢((uv)/o1) ¢(1;/202) |v| dv.

o1

This is (using that ¢(u) = 67“2/2/\/27r and that ¢(u) = ¢(—u) for all u)

1 +oo 1,2 09)2+(u/oq1)?
f01702(u):7_r0_10_2 o € °? ((/a2)"+(w/o1)%) 4 dy

_ 1 (—)‘—ooe—%vz(1+u2(0'2/0'1)2)/0'% vdv
TO102
_ 1 +oo (_6*%v2(1+u2(02/01)2)/"§>,dv
woroz (1 + u2(02/01)2)/05) 0
1

o1 u 2\’
Toa (1+ (01/02) )

which is a Cauchy distribution with location zero and scale o1 /05.
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Fisher information

Let
dlog fo(x)
00

be the score.

The score has mean zero:

By (2losfole)) = (218000 fy(0) dy = [ 2142 di = 0

(where the last step follows from fp integrating to one.)
The variance of the score,

Io — vare (M) 7

00
is called the Fisher information.

When the score is a vector the information is a (variance-covariance) matrix.
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Information inequality

Theorem 1 (Cramér-Rao bound)

Under regularity conditions,
varg(0,) > I, /n

for any unbiased estimator 6,, of 0.

More information reduces the variance bound.
The bound shrinks like n1.

From the proof (to follow) we have that 6,, attains the bound if and only if

n

njg(en_e)zz alo@@ijg(xi)
i=1
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Proof (for the scalar case).

Differentiating the zero-bias condition

Eq( =[.. . [On(z1,...,20) —0) I, fo(z:) dz1 . ..dan =0,
gives

J-. f{ xl,...,mn)—e)w Hfgml}d:cl .dz, = 0.
Because densities integrate to one and an identity below we can re-write as

[ fOn(,. .. zn) — 0) 3, 280 T fo(2;)day ... don = 1.

But this is just
Eo (60— 0) 3o, 2o8fp=0) = 1.

Furthermore, this is a covariance (as both terms have zero mean), and so

. 3\ 2
1 = covo (6, 30, Z2£250)" < varg (0) x varo (52, 21o8fe() )

(by Cauchy-Schwarz). The result then follows from
varg (Zl %&’(I’)) =nly.

O
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Proof Annex: Identity used in Step 2.

Above we used the following:

8logf9 (1) 1 Ofg(wi)
Z Z fg 1’7, 89

=il
_ H]’#i fo(x;) Ofe(xi)
N ;( L1, fo(z;) ) o0
STl el
B I1; fo(=3) 1, folz))

(using the chain rule on the differentiation of a product), so that we obtain

OTT, fo(zs dlog fo(z;
H%():(Z 8o )(wa)

=1

the integral of which is an expectation. O
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Cauchy-Schwarz inequality

Theorem 2 (Cauchy-Schwarz)

For scalar random variables x; and y;
E(zy:)® < E(2}) E(y).

FEqually, for a sample of size n,

n 2 n n
i=1 i=1 i=1
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Information equality

A useful result is the folowing alternative characterization of the information.

Theorem 3 (Information equality)

a1 5 9”1 :
o () - (V50),

We will need this later when establishing optimality of maximum likelihood.
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Differentiating
JRIELE [y 0) dr = 0

under the integral sign gives

2
[0k 16 £ () di 4 [ 2L S0(@) Dbo(a) gy

Because
Olog fo(x) _ 1  9fe(x)
a6 fo(z) 06

we have %éz) = 81%’;9(1) fo(z) and so we obtain

2 O, x O, x O, x
Ep (818575‘3()) +E, (al 8 fo(ri) Dlos ol 7)) 0.

Re-arrangement then yields the result. O
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If it exists, the best unbiased estimator is unique

Theorem 4 (Uniqueness)

If 02 and 68 are such that
Ey(67) = Eo(07) =0, vare(07) = vare(07) = I; ' /m,

then 02 = 05,
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Proof (for the scalar case).

Define a third estimator 8$ through the linear combination
05 = X0+ (1—N 02, xe(0,1).
Then Eg(05) = A Eo(62) + (1 — \) Eo(62) = 6, so 65 is also unbiased, and
varg(0S) = Avarg (05) + (1 — A)2vare(65) + 2 A(1 — A) cove (02, 62).

Now, varg(0;) = varg(05) = I, ' /n by efficiency and

lcove (0, 02)| < stde(02) stde(02) = 1, /n
by Cauchy-Schwarz. Thus,

varg(05) < I, /n.

The inequality cannot be strict because 6 and 02 are best-unbiased. So
we must have that |corr9(9f3, 65)| = 1 which happens iff

02 =a+b6Z

for constants a,b. Now we have that b = 1 as varg () = varg(62) and
a=0as Eg(07) = Ee(62). O
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With binary data we have

log fo(x) = @log(0) + (1 — ) log(1 — 6),

so that
dlog fo(xz) =z 1—x  x—40
00 S0 1-6  e(1-0)
0%log fo(zx) 01—+ (z—-0)1-20)  (z— 0)?
062 N 02(1—0) T02(1-0)2
Clearly,

Olog fo(z:)\ _ Eo(xi—0) Po(zi=1)—60
E"( 5 >_ oo - i o ="

Further note that, here,

dlog fo(x) 2_ 0% log fo(x)
< 20 )‘_ 202’

and so the same holds on taking expectations. This immediately verifies the
information equality.
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Note that
Eo(x) = Eo(x:)

when z; € {0,1}.

So,
varg(x;) = Eo((zi — 0)%) = Eg(z? — 22:0 + 6%) = 0(1 — 0)

The information thus is

Iy — vare(x:) 1

Te2(1-6)2 #(1-6)

The efficiency bound for 6 is
0(1—0)
-

Note that this is a concave function in 6 (and so is maximized at § = 1/2).

The sample-mean theorem immediately implies that Z,, is the best unbiased
estimator of 6.
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Theorem 5 (Sample-mean theore

Let @,, be the mean of a random sample x1,...,x, from a distribution with
finite mean and variance w,o>. Then

E(Z,) = u, var(T,) = o /n,

no matter the distribution of the x;.

By linearity of the expectations operator in the first step and by random
sampling in the second step,

_ 1w 1
E(@,)=E <n Zah) = ZE(IZ) =
i=1 i=1
Next,

var(Z,) = var < Z > _ var(din, %) = 2 iz var(z:) -7

— n? n? n

again by random sampling. O
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Here we have
log fo(x) = x log(#) — 6 + constant.
So,
dlog fo(z) = 0%log fo(z) oz
o0 0 062 RN

We note the mean/variance equality of a Poisson distribution:

o0 —0 —60pz+1 e—0gT
) — 9 _ o e Y67 __ oo e Y’f _ 9 _
Eo(mi) =2 00w = 2200 @D = 2am0 —ar — =0 I — =10

—0gx

(because Y7 < =2, fo(xz) = 1), and similarly,

!

Eo(a?) = Y0 2?08 =0 % (a+1) =" = 6%+,

so that varg(z;) = Eg(z?) — Ee(ﬁﬂi)z =0.

Then Iy = 1/6 and
0/n
is the efficiency bound.

It is again immediate (by the sample-mean theorem) that T, will be best

unbiased.
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Normal distribution

Here,
N2
log fo(z) = —% <log o’ + (9:0—2,u)> + constant.
So,
Olog fo(x) _ (x—p)
o o2
dlogfo() 11 (x—p)’
do? T2\ g2 o4 ’
and
& log fo(z) _ % (Z_;{‘_)
0000" SGD;_4N2 . :

The information now is the (diagonal) matrix

5= g (Plogfo(z)\ _ (= 0
T T\ o000 “Lo 2 )
so that the efficiency bounds for p and ¢? are o2 /n and 20 /n, respectively.

37 / 318



The sample mean is again best unbiased for pu.

An unbiased estimator of 2 is

n

1 _ N2
n_lz(xifxn) .

=1

However, it does not hit the efficiency bound (see below).

In fact, as
an dlog fole) _ 1 (n _Xii(@m—p?\_ n Z (@i —m)?® 2
— 0o2 2 \ o2 ot 204 et n

depends on g we cannot have proportionality of the sampling error of any
estimator when 1 is unknown; the best unbiased estimator is n™" 3" (z; —p)?,
which is infeasible.

It follows that the efficiency bound is not attainable for 2. Moreover, a best
unbiased estimator of o2 does not exist.
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First start with the obvious estimator of o2 that is

This estimator is biased:
B (0™ S0, (2 — T0)?) = B((@i — 7a)?)
= E(((wi — 1) — (Tn — 1))?)
— B((wi — 1)) — 2B((zi — 1) (@0 — 1)) + E((@n — 1)?)
= varg(x;) — 2cove(x;, Tn) + vare(Tn)
=0 —20%/n+c*/n
=0’ —0o’/n
L_la2.

n

The bias arises from estimating the population mean by the sample mean.

The estimator Z, has a variance, o2 /n, and covaries with each datapoint z;,
with covariance o2 /n.
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An unbiased estimator is therefore

n

~2 n 2 1 = 2.
T = n=1° _nfllz:;(ml n);

the change in the numerator is called a degrees of freedom correction.

We can show (see below) that

~2 n
i 2
(’I’L— 1); = - 2 ~ Xn—1,

and we know the variance of a x2_; is 2(n — 1).

2 2 ~2 4
oy o 0T 20
V&I‘(U)7<n_1) var((n 1)02>7n—1

which exceeds the efficiency bound 2¢*/n.

Hence,
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Sampling distribution of normal variance

First,
BN v MO S
o? o2
N (wi—m) =@ - ¢ (wi—u)z_z": Tn —p\’
=1 g i=1 g =1 g

N s e I D Gl (D

=1 i=1

The right-hand side terms are x2 and x?, respectively. The characteristic
function of a x2 is (1 — t) P2,

Second, T, and &2 are independent by Basu’s theorem.

Third, the characteristic function of the sum of independent variables is the
product of their characteristic functions, so (n — 1) 52/0? has characteristic
function

(1—2ut)™™2 (1 — 2)"% = (1 — )~ ("= 1/2

so it is Xi,l.
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x} ~ N(u,0%).

The data are top-coded at ¢, i.e.,

x;  ifz<c
T = .
‘ c ifz} >c¢

The density is

folz) = <§¢ ($;M>>{z<0} y (1 _ & (c;,u,>>{w=c}-

Let us focus on the mean parameter p here. So we assume that o is known.

Note that

d1og fo(z) = o((c—w)o)jo
B TR e S el e Ty ¥

both coded and non-coded observations will contribute to the likelihood.
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The probability of not being top-coded and being top coded are

#(50) (),

respectively.

Further,
Lo((x—p)/o),
o ®((c—p)/o)’

so that the deviation of the mean (from p) of this truncated distribution is

fo(z|z <c) =

< (z—p) (z—p) 2] z— o)/o _
& d o2 (o(( u)/ )/o) c

S e o (H5) de o7yt dr o)

®(54) ‘P(f“ ) ®(54)

o o

Using these results it is immediate that
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After some more calculus, 9% log fo(z)/0?u is found to be

1 1
r<ad G- G Te s /0

The information on u then becomes

w0 () 4 e () (25 - 5

—(c-pjo) o

The mean of the underlying random variable is pu.
The mean of the coded data is c.

The mean of the non-coded data is

¢((c —n)/o) <1¢((C—u)/0) _c—u>.
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Again take z} ~ N(u,0?).

Now only observe

1 ifa; >0
TV 0 ifar<o
which is Bernoulli.

The probability of success and failure are

®(p/o), 1-2(u/o),
respectively.

These probabilities depend on u, o only through the ratio 6 = p/o, implying
a scale indeterminacy; we can only learn 6.

The mass function becomes
fo(x) = @(0) x (1—(0))' ™"

(Could further just focus on success probability p = ®(#) but this would not
extend to the model with covariates.)
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Then

Dlog folz) _ 6(0)
CEIND) — (o - 20 g

which has mean zero and variance

so the efficiency bound for 6 becomes

1 20)(1 - 2(6))
nooe0)

A sensible way to estimate 6 would be to first estimate the success probability
p = ®(0) by the sample mean T, and then construct

0, = (Tn).

This estimator is not unbiased (an unbiased estimator of 6 does not exist
here) but it will hit the efficiency bound in large samples.
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Regularity conditions for Cramér-Rao bound

Derivation of best unbiased estimator above required regularity conditions:

m Differentiability of the density/mass function,

m Conditions for interchanging order of differentiation and integration.

An example where this fails is
x; ~ (continuous) uniform]0, 6],

that is,
0<z<0
fe(m)——i{ _g_ }

Nonetheless, a best unbiased estimator exists.

This follows from the Lehmann-Sheffé theorem, which builds on complete
sufficient statistics.

» Skip the remainder of this section
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A statistic v, = y(z1,...,Ty) is sufficient for 0 if

fG(xl,- 7'1:""77’1) = f(xh' . -71:n|")’n)7

i.e., the conditional distribution does not depend on 6.

An obvious example is the Bernoulli distribution, where Py(z; = 1) = 6.
Here,
fo(z1,...,zn) = gri=1 @i (1- 0)11721-:1 i

n
i=1

Indeed, -7, x; is binomial with

o (i wi) = (5" ) 07517 (1= )" i m,

n
i=1 Ti

so a sufficient statistic will be >, x;, the number of successes in the sample.

and so

fg(xla v ,$n| Z’z‘nzl xl) = ( ?jl :cl) = (Z?:l xi)!(z!_ ?:1 z;)!

is free of 6.

48 / 318



Sufficiency of the sample mean for a normal population

As another illustration, take x; ~ N (0, ¢?) with o known.

Then the sample mean %, is sufficient for the unknown population mean 6.

‘We have
n
1 x; — 0
T1,... —
fo(z1,...,x g U¢( )
n o2
_ 1 . _%Ei:1fjl 9) )
- (27T0-2)n/2
N (@ —Tn) 4 n(Fn—0)2
_ 1 . 7%EZ=1(Z 0)2-%—( 9))
(271-0-2)71,/2
n .z 2 —
B 1 _%;zzl(jg—”) 1 _%71(17;729)2>
- (27“72)(7171)/26 (271.02)1/26
and

— N 1 Tn — 0 n1/2 _%"(i;zgei
we = e (o) = <2m2>1/2€< )
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It follows that

n o2
o felwn,ema) | noV2 —pEmlm )
f9($17"‘7xn‘x”) - fe(fn) - (27-“72)(n—1)/26 ’

which does not depend on 6.

When ¢? is unknown a sufficient statistic for both p and ¢? is the pair

1
T, > (@i —Ea)?,

n—1 4
i=1

i.e., the sample mean and sample variance.
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Improved estimation based on sufficiency

Theorem 6 (Rao-Blackwell theorem)

Let 0. satisfy Eo(0+) = 6 and let v, be sufficient for 0. Define the estimator

On = E(6«|vn)
(which is a function of the data through v, only). Then 6, is unbiased and
varg (0,) < varg(6s)

holds.

Unbiasedness of 0,, follows from iterating expectations on 6..

Next, by the law of total variance,
varg(0x) = var(E(0«|vn)) + Eo(var(0«|yn)) = vare(6,) + non-negative term,

and so varg(0.) > varg(0yn).

Finally, 6, is a statistic (and so computable from data) by sufficiency. |
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Rao-Blackwellization for Bernoulli

A simple unbiased estimator of 0 is 6, = z1; its variance is 6(1 — 6).
Define
0n =F (.’El ‘Z?:l :L‘Z) = P9($1 = 1| Z?:l .CUZ)
Note that
P>z =zlrr =1) Po(x1 =1)
Py, @i =)

PS(Z?# zj=(x—1)|z1 =1)Py(z1 = 1)

Po(Xin, wi = )
Po(Xjpiws = (@ —1))

Pg(xl = 1| Z?:l Ty = JI) =

= - Po(x1 =1
By o —a) =Y
n— T — n—x n—1)!
_(mperta-e) _ T
(7) o1 = o)== s
_ (=D 2z
oonl (z-1D! n

Thus, 0, = n~" Y. | 2; = Zp,, which has variance (1 —6)/n (and is, in fact,
best unbiased).
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Completeness

A statistic v, is complete (for fp) if it holds that
if Eg(p(yn)) =0 for all 6, then Py(¢(yn) =0) =1 for all 6,
for all ¢ for which the expectation exists.
To clarify take x; ~ N(#,0%). Consider the statistic z2 — z1. We have
Eg(za—21)=60—0=0, for all 6.
However, z2 — 21 ~ N(0,2¢?), and so
Py(xza —21=0)=0 for all 6.

So, this statistic is not complete.

53 / 318



Completeness in the normal problem

A complete statistic here is T,, = n~t Z?zl Ti.
We look for a function ¢ such that Ey(p(Z,)) = 0 for all 6.
‘We have

_ + Tp—
Bo(p (@) = [*Z0(0) 7m0 (252) de
= Jano? = /;e‘%W N[0 () e~ B (@) gn0/5%)z gy
o /N
e 1L (@(:c) 67%(:”/”)2) ;

for L(g(x)) the (two-sided) Laplace transform of g(x).

The Laplace transform L£(g(x)) cannot be zero unless g(z) is zero (almost
everywhere). As the exponential function is non-zero it must be that p(z) =
0 (almost everywhere), as claimed.
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Completeness in the Bernoulli problem

Remember that, if Py(x; = 1) = 6 for 8 € (0,1), then v, = Y1 @ is
Binomial with parameters (n,0).

So, if
- n\ I e n 0 \"
Eo(p(y))=> v _]070=0)""=1-0">_ ¢() — ] =0
Y v/ \1-90
v=0 ~v=0
for all # € (0,1) then the following polynomial in A = 6/(1 — 0)
~ !
cy A =0, cy = n ,
’; vy Y QO(’Y) ’y(n _ ’Y)'

must be zero for all 6 € (0,1).

But the latter can only hold if ¢4 = 0 for all v, and so ¢(y) = 0 must hold
for all v € {0,1,...,n}.

Hence,
Po(p(mm) =0)=1
follows.
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Best unbiased estimation under sufficiency

Theorem 7 (Lehmann-Scheffé theorem)

Let v, be a complete sufficient statistic for 6 and consider 0, = () for
some function @. If Eg(0,) = 0 then

varg (0,) < var(6x)
where 0. is any unbiased estimator; i.e., O, is the best unbiased estimator.

By the Rao-Blackwell result, under sufficiency, any efficient estimator must
be a function of v, only; so, 6, = ¢(v,). Then, by assumption, Fy(6,) = 6.

It is enough to show that ¢ is unique. Suppose there exist another v such
that Eg(¢(vn)) = 6. Then, by unbiasedness of both estimators,

Eo(0(n) — ¥(7n)) = 0.

But, by completeness, this implies that Ps(¢o(vn) = ¥(1n)) =1 (ae.). O
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‘We have shown above that .
Yo =D i
i=1

is both a complete and sufficient statistic for 6.

An unbiased estimator based on it is the sample mean
n
Tp=n"" sz =y /n.
i=1

This confirms the Cramér-Rao result for Bernoulli that T, is best unbiased.
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Estimating the maximum of a uniform distribution

Recall 0<<o
fe(fc)=7{ _g_ 3

Easy to see that the maximum-likelihood estimator here is max;(z;).
This estimator is biased.

For all z € [0, 6],
Py (max(xi) < x) =Py(r1 <z,z2<w,...,75p <) = (2/0)".

Further,
Eg(max z;)) fol— (x/0)" dox = ;25 0.

(The first step holds for any non-negative random variable z € [0, b], say;
integrate by parts to see that

JoU = F())dz = (- F(2) 2l + [4 2 f() dz = B(2),

as claimed.)
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It follows that

is unbiased.
Remains to show that 7, = max;(x;) is a complete sufficient statistic for 6.

We already know that Pp(y» <) = (7/6)" and so its density is

nl
for v € [0, 6] (and zero elsewhere).
Hence,
Eo(p(m)) = [o0(0) n T dy = (n/0") (Joe(r)y" ™" dy) = (/0™ Q(0).

Note that, by Leibniz’ rule,

aQ(Q) _ n—1
50 (0)6" .
So, if Eg(p(vn)) = 0 for all € then Q() = 0 must hold for all 6, but then

its derivative must be zero and so ¢(0) = 0 must hold. So, 7, is indeed
complete.
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To see sufficiency we look at the ratio of the density of the data,

iz <0} {wm <6}
H 0 - o™ ’

=1

and the density of the sample maximum,

n—1 {’Y’"« S 0}
Ny e
(from above).
As this ratio is
1—-n
Yo /M

it is free from 6 and so 7, is indeed sufficient.

Working out the first two moments of v, using its density from above gives
1 2
—0
n(n + 2)

as the variance of the unbiased estimator 6,,.

Note that this variance shrinks like n =2, which is faster than the parametric
rate of n~ 1.
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Efficiency bound for biased estimators

In many cases an (best) unbiased estimator will not exist. So we need to
widen our search to allow for bias.

First generalize Cramér-Rao bound to case where 6,, is biased, i.e.,

Following the same steps as before gives the efficiency bound

varg(0,) > Iy (1 + b,(0))? /n.

Quite generally, b, (0) = O(n™!), and so
varg(0,) > I;l/n + O(n72);
the bias vanishes faster than the standard deviation.

From an asymptotic perspective, this paves the way for best asymptotically
unbiased estimators.

61 / 318



Asymptotics (for the univariate sample mean)

Asymptotic analysis is an approximation to the finite-sample behavior of an
estimator based on what happens when n becomes large.

While exact small-sample results are few and ad hoc. Large-sample analysis
is well established and widely applicable.

The behavior of the sample mean as n — oo brings us a long way.

This is so because almost all estimators you will ever look at behave, as
n — 00, like a sample mean.

Such estimators are called asymptotically linear; we can always represent
them as
(On —0) =11 (@) + 0p(n""?)

for some function g for which Fyg(pg(z;)) = 0 and vare(pe(z;)) < co. We
will see many examples.

Slide 25 gives the influence function for the best unbiased estimator (when
it exists).
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Orders of magnitude (deterministic sequences)

Let h and g be two functions (and h(z) > 0 for large x).

We say that g(z) = O(h(z)) if and only if there exists a positive number b
and a real number z such that

lg(z)| < bh(z) for all z > z.

That is,

lim sup
Tr—>00

)<~

h(z) grows at least as fast as g(x).

We say that g(x) = o(h(x)) if and only if for every positive number b there
exists a real number x such that

lg(z)| < bh(zx) for all z > z.

That is,

h(zx) grows faster than g(x).

63 / 318



Orders of magnitude (random sequences)

Let {x,} be a sequence of random variables and let {a,} be a deterministic
sequence of numbers.

Consider the limit behavior as n — oo.

We say that z, = Op(an) if and only if for every § there exists a finite number
e and an n such that
#(

That is, |zn/ax| is stochastically bounded.

Tn

an

>e><6foralln2@.

We say that z,, = op(an) if and only if for every § and finite number € there
exists an n such that

P(Z—n >6)<§foralln2@
That is,
. Tn
lim P( — > e) =0
n— 00 Qn

for every € > 0.
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Convergence in probability

We say that z,, converges in probability to z if,for every € > 0,

lim P (|zn — x| >€) =0,

n—o0
ie., if zn —x = op(1).

We write 2, & 2 and call  the probability limit of the sequence {zn}.
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Theorem 8 ((weak) law of large numbers)

Suppose that p = E(z;) exists. For any € > 0 and § > 0, there exists an n
such that
P(|Zn — p| > €) <6, for all n>n.

That is, Tn - p as n — co. Equivalently, Tn — p = 0p(1).

Suppose that o exists. Then (by Chebychev’s inequality)
E Ty — 2 _ 2
P~ il > &) = P((Fn — 1 > &) < 221 _ 2 O
Taking limits gives the result. O

Note that we immediately get the same result for any transformation o(x;)
provided that E(|¢(x;)|) < co. That is,

=ty plxi) B E(p(xi)

as n — o0.
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The below plots give deciles of ,, as a function of n.

s normal (o exists) | Student (u exists but o? does not) . Cauchy (u does not exist)
03 08 BB X X % s X Xy Kok g x XK X X x
02 06

2

1
froc s x x X x X X X Xk X X X X X K X X X x X x

T

deciles

04
03 2
: 06
04 08 3
05 1 4
o 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500
n n n
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An estimator 6, is consistent for an estimand @ if 6,, 2 0.

The mean squared error of is
Eo((0n — 0)%) = (Eg (0, — 0))* + varg(0,) = b, (0)* + varg(6,);

so a sufficient condition for consistency is that both bias and variance vanish
as n — o0o.
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Uniform convergence

A more general situation has yg(z;) indexed by 6 € © (continuous on ©
compact).

A pointwise convergence result (i.e., for any fixed 6 € ©) follows from above:
P(In=">, @o(xi) — E(pa(x:))| > €) <6, for all n > ny,
A uniform result is as follows.

Theorem 9 (Uniform law of large numbers)

Suppose that pg(x) < v(z) and E(|y(z:)|) < co. Then, for all § € O,

d

with n independent of 6.

n! Z o (x:i) — E(po(x:))

> e) < 4, for all n>mn,

We write

sup 50

6coe

nt Z wo(xi) — E(po(xi))

as n — oo.
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To appreciate the difference between pointwise and uniform convergence take
a simple non-stochastic example:

wo(x;) = nfe ™0

for # € © = [0, 1]. This function is continuous in 6.

For any fixed 0,

—nb

nbe —0

as n — o0o. (because the exponential term vanishes more quickly than the
linear term grows.)

However, at §# = n~! the function equals e™' for any n. Hence,

—no
sup|nfe”""| » 0
0co
as n — o0o.

Note that (in general), uniform convergence implies pointwise convergence.

70 / 318



Continuous-mapping theorem

Theorem 10 (Continuous-mapping theorem)
Suppose that xn 2> x.

Then

p(an) = ()
for (non-stochastic) continuous functions .
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Convergence in distribution

Let {z»} be a sequence of random variables with distribution {F,} and let
z~F

We say that x,, i> x if
F.(a) = F(a) as n — o

at all continuity points a of F.

We call F' the limit distribution of {zn}.

If 2, 5 it is stochastically bounded, i.e., z, = Op(1).
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The central limit theorem

Theorem 11 (Lindeberg-Lévy central limit theorem)

Suppose that x; ~ i.i.d. (u,c?). Then

Tp — U d

s — N(0,1)

as n — 0.

This means that the sample distribution of the standardized sample mean
approaches the standard-normal distribution.

In practice, this means that
T ~ N(p,0°/n),

where the a can be interpreted as either ‘asymptotically’ or ‘approximately’.

Observe that this result holds for any distribution, as long as p, o2 exist.
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The plots below concern the standardized sample mean of samples of
Bernoulli random variables.

Observe how the histogram approaches the standard-normal density as n
grows.

n=100 n=1000

74 / 318



Let . (t) = E(e'"™) be the characteristic function of .
Then

1 z; —
z = 53}’
N o 1
has characteristic function

(1) = B(e* V) = T] B VD) = ou, ¢/ /)"

i
where we used random sampling.

Now, as ¢z, (0) =1, ¢,.(0) =0, and ¢7,(0) = —1 we have

o t1VR) = 00+ 940) 4050 2 o (£) =1- ko (£)

as n — 0o, and so

p— 2 "
lim ¢.(t) = lim (1 + ti/Q) = eftz/Q(: ¢ of the standard normal)
n— oo n—oco n

by definition of the exponential function. O
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Slutzky’s theorem

Theorem 12 (Slutzky’s theorem)

Suppose that z, 2 ¢ (a constant) and yy, KA y (a random variable). Then
(i) Tr + Yn 4 c+y; and

(i) Tn Yn N cy.
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Take x; ~ N(u,0?). Best ‘estimator’ of o is n™' >, (z; — p)*.
As an example of (i),
5% = ’12 i =) =0Tty (@ — ) = (@ — ).

2 2 P

As (Tn — p) 5 0 and (a — p)? is continuous in a we have (T, — p)2 2 0.
Hence,
62 =n"" Z(mz —u)? +o0p(1).
In fact,
(Tn — N)2 = (Op(l/\/ﬁ))Q = Op(1/n) = 0p(1/V/n),
and so

2 2 1 2 2
—0Y) = — - 1).
VA(E? = %) = 2 3w = 0 = 0% on(1)
Hence, 6° and n~ 'Y, (z; — p)* are asymptotically equivalent; their limit

distribution is v/n(6% — o?) 4 N(0,20"). This is the same limit distribution
as that of (the unbiased) 2
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As an example of (ii),

Tn — W

&/

fn—u_ o Tn—,u_mn—

SHEN

Now given an asymptotically-linear estimator,

(On—6)=n"" Zcpe(sz‘) +0,(n~1?)

where Eg(ps(zi)) = 0 and varg(pe(zi)) < oo our results immediately yield
that

(a) 0, — 0 = Op(n~Y/?); and

(b) V(6 — 0) ~ N(0, varg (s ().

We call varg(@o(z;)) the asymptotic variance.
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Mean-value theorem

Let ¢ be a differentiable function on an interval [z,Z,]. Then, for any
(x1,22) € [z,Tn]? there always exists a z. € [z,Tn] (not necessarily unique)
so that

ploz) — po1) = 20D (0 — ),

79 / 318



Asymptotics for smooth transformations

Theorem 13 (Delta method)

If V(0 — 0) 5 N(0,02), then

Va(p(8n) — ©(8)) % N (0, (9p(8)/80)° 6°)

for continuously-differentiable .

A mean-value expansion gives

_ 0p(6.)
©(0n) — p(0) = 90 (0n —0)
The continuous-mapping theorem yields
9¢(0.) p Op(0)
20 00
Slutzky’s theorem gives
_ 09(0) d 2 2
V(e(8n) = ¢(0)) = =55~V (6n = 0) + 0,(1) = N (0, (9¢(0)/90)" 07) .
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The multivariate case

Now suppose that x; is a vector with mean p and variance 3.

The multivariate central limit theorem reads
VSTV (@, — i) 5 N(O, 1),

where I is the identity matrix of conformable dimension. Here, the limit
distribution is a multivariate standard normal.

The Delta method extends as follows. Suppose \/n (6, —6) 4 N(0,X). Then

Va(p(0n) — (9)) % N(0,TET)

for

the Jacobian matrix.
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A nonsingular matrix A has eigendecomposition
A=VDV~!

where D is a diagonal matrix of eigenvalues and V' is the matrix of associated
eigenvectors.

The inverse is

A =vD'vTh
A matrix square root is

AY2 — ypl2yt
Note that

ATV2AATV2 —(vD Py Dy Y (vD TRy = 1

So, for example, if \/n(6, —6) 4 N(0,X) for an m X m nonsingular variance
3, then

(i) VaS Y20, — 0) % N(0,I,,); and
(i) n(0p — 0)S 71 (0, — 0) 5 2.
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The multivariate normal distribution

If x ~ N(u,XY) its density is
1 ENCEN R CED)
— ¢ 2
(2mr)dimzdet(X)
Any subset of z is again normal. All conditional distributions are again
normal.

Partition x = (x7,x5) and write

T\ Ny M1 Y11 X

Z2 2 Yo1 Moo ’
The marginal distribution of 1 is normal, 1 ~ N (u1, X11).

The conditional distribution of x1 given z2 is

N (,ul + 21222_21(1'2 - ,LLQ), 211 - 21222_21221) .
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The bivariate normal distribution

The above is particularly tractable in the bivariate case, where z1 and z2 are
both scalars.

< - ) N( ( p ) ( O—% ik ) )
~ 2
T2 2 pPoO102 (o5

for p the correlation between 1 and 2.

Write

Here,

T1lwg ~ N (#1 + P% (w2 — p2), (1 = pz)(,f) :
2
Note that
o o o
E(z1]w2) = p1 + p— (v2 — pa) = (Ml - P*lm) +p— w2
o) g2 g2
is linear in zs.

Also, var(x1]z2) is a constant (i.e., not a function of x3).
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Best asymptotically unbiased estimation

We say that 6, is best asymptotically unbiased for 0 if
Vil —0) % N(0,I;),

so it achieves the Cramér-Rao bound in large samples.
It exists under weak regularity conditions.

A coherent way of finding it is through the method of maximum likelihood.
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The likelihood function

The maximum-likelihood estimator is

0 = arg maXHfg xi) = argmaleog fo(zi)

The likelihood function, [, fo(x:), represents the density of the sample
when sampling from fp.

In the discrete case, it is the probability of observing the actual sample, when
sampling from fo.

Maximize this probability as a function of 6.

Intuitively attractive. Pretty much what anyone without any prior statistical
knowledge would do.
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Maximization program

Let
Ln(0) = Z log fo(x:)

be the log-likelihood function.

The first-order condition is that

OLy(0) _ ~—~ 9dlog fo(xi)
00 Z 00

= =0;

this is the score equation.

The second-order condition for a maximum is that

OPLn(0)  ~— 0%log fo(w:)
5058 = 2 aese <

the Hessian matrix is negative definite.
Note how these derivatives relate to the Cramér-Rao bound.
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Numerical maximization: Newton-Raphson

Often we need to tackle the maximization problem numerically.

Newton-Raphson is a popular algorithm for finding the roots of the score
equation.

Want to solve p(x) = 0. Let z¢ be an initial guess. For a new guess z1 we
have
p(z1) — p(xo) _ Op(z)

_ /
T1 — Xo ox = ¢ (o).

T=x0

So,
@(z0) + (z1 — 20) @' (T0) = p(21).
We want that ¢(z1) = 0. Solving for x;1 yields

x1 = o — @(0)/¢ (20)
as our new gueSS.

In practice, when maximizing a function whose derivative is ¢, we start at
xo and then evaluate ¢ in z;. If the function would not improve at z; we
re-evaluate in x] = xo — h(wo — x1) for h € (0, 1) a step size and re-evaluate.
We then iterate this procedure untill no further improvement (up to some
specified tolerance level) is found.
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When z; € {0,1} with probability 8 € (0,1) we have

L,(0) = log (ﬁ 0% (1 — 9)1_zi> = ﬁ:xl log0 + (1 — x;) log(1 — 0).

i=1

So, solving

0L, (0) i x;—0 T — 0

20

“Z9-0) "o(1-0) =0

for 0 yields 6 =T, as the unique solution. This is a global maximum as

PLn(0) <= (2 —0)?
o~ Ze—op <0

for all 6 € (0,1).

This estimator is best unbiased and so also best asymptotically unbiased.
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Invariance

Maximum likelihood is invariant to one-to-one parametrizations, 8 = 3(0).

If L,(0) is the log-likelihood and L}, (8) is the reparametrized log-likelihood,
then

B = argmax L, (8) = f(arg max La(6)) = 5(0).

This is an interesting property.

A consequence of invariance is that maximum likelihood will not be unbiased,
in general.

If § is unbiased and the transformation 3(6) is nonlinear, then 8 = () will
be biased, in general, by Jensen’s inequality.

90 / 318



Jensen’s inequality

A univariate function ¢ is concave if

pOz + (1= V') > Ap(a) + (1 - N(a')
and convex if

Az + (1= N2’) < Xep(z) + (1= Nep(a')

for all A € [0,1].

Theorem 14 (Jensen’s inequality)

If ¢ is concave, E(p(z:)) < @(E(z:)). If ¢ is convez, E(p(x:)) > p(E(z3)).

Proof.

Take ¢ concave. Let ¢ be the tangent line at E(z;); i.e., ¥(z) = a + bx for
constants a, b such that o(E(x;)) = (E(x;)).

By concavity ¢(z) < 1(z) for any z. Hence, using linearity of the tangent,

E(p(zi)) < E(P(z:)) = p(E(w:)) = p(E(z:)).
O
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The simplest probit model from above had

The score equation is

- »(6) _
2 (= =20 55— gy ~°
and the efficiency bound was
(0)(1 — 2(0))

b(0)?

Finding 6 by solving the score equation requires numerical optimization.

1
n

Notice that the success probability 8 = ®(0) is a one-to-one transformation
of 0. The likelihood for 3 is the ordinary Bernoulli likelihood, with maximizer

B=7Tn.

It follows that 0 = ®~(Z,,).
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Further, as
Va(B - B) % N(0,8(1 - B))

by the central limit theorem,

09 (B) 1

B )’
and 8 = ®(0), the Delta method gives

\/ﬁ(é—e)ijv<o7w>_

The asymptotic variance is indeed the Cramér-Rao bound.
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The maximum-likelihood estimator may fail to exist in small samples.

In the probit model this happens when complete separation is possible.
In essence, this means we can classify outcomes exactly.

In our model, where
Py(z; =1) = p = D(h),

a data set consisting of only successes (ones) will have B =1, and so 6 = +o0.
If 8 € (0,1) this problem will not occur in large samples.
In an extended model with explanatory variables perfect separation would

happen, for example, when all successes can be assigned to one covariate and
all failures to another.

This problem may, in principle, persist in large samples.

94 / 318



Why does maximizing the likelihood work: Identification

Note that the expected log-likelihood

L(0.) = Eg(Ln(0.)) =Y Eo(log fo. (z:)) = n Eg(log fo. (v:))

i=1
is maximized at 6.
Indeed,

Bo(Ln(0.) = Ln(0)) = n Eo (log (ff%)))) = log b @g&;) -

using Jensen’s inequality and the fact that Fo(fo, (x:)/fo(z:)) =
[ fo.(x)dzx =1.

Crudely put, L(0) is the log-likelihood function we would use if we would
have an infinitely-large sample.

(Point) identification means that, in that case, we would be able to learn 6;
SO

0 = arg max L(0.),

and is unique.
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Identification may fail (we will give an example below).
Global identification: 6 is the unique maximizer of L on O.

Local identification: 6 is the unique maximizer of L in some neighborhood
around 6.

Local identification is

9*L(6)
9600 < V"
Note that, as
O’L() 9%log fo(xi)\ _
9000 ”E9< 9000’ = —nlo

this is equivalent to the information matrix being positive definite and, hence,
of full rank.

Local identification can be tested.
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Why does maximizing the likelihood work: Argmax theorem

By a uniform law of large numbers,

sup|n ' Ln(0) —n 'L(0)| B 0, as n — oo,

0co
provided fo is continuous, |log fo(z)| < b(z) so that E(b(z;)) < oo, and O is
closed and bounded (compact).

Then, if 6 is identified as the unique global maximizer of L(6), we will have
that
P
arg max L,(0) — arg max L(0),
but this is just R
0250, asn — oo,

which is consistency.
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A uniform e-band around L(6) and the corresponding interval [fin, fmax] in
which 6 must lie.

As n — oo, the e-band tightens and so the intervaAl [Omin, Omax] shrinks to a
point. By identification this point must be 6. As 6 € [fmin, Omax| it must be
that 6 converges to 6.

98 / 318



Regarding uniform convergence, consider the probit model as an example.

There,
log fo(ylz) = y log ®(2'0) + (1 — y) log ®(—z#).

We have, by a mean-value expansion, that

log ®(z0) = log ®(0) + o (ad.) 0

and 0 < igz)) < ¢|1 4 u] for some finite ¢ (visual inspection will help to see

this). Consequently,

P(0-)
D(z0.)
< |log(2)] + cla||| + clx|*|0]*

[log ®(z60)| < |log ®(0)| + |z8] < |log(2)] + ¢ |1 + 04| |z]|0]

so an integrable upper bound on log fy(z;) exists provided E(x?) < 00.
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Asymptotic normality

By definition
n

810 o\Ts
3 g fo(i)

90 =0.

i=1 0

A mean-value expansion around the true 0 gives

n

dlog fo(x;)
2

= Zn: dlog fo(x;)

" 92 log fo(xs)
0 2

, 0-0)=0,
o, 0000

0

i=1 =
where 0, is some vector that (elementwise) lies between 6 and 6.
Inversion of this equation gives the sampling-error representation

R dlog fo(x;)
)y e

i=1

n

(0-0)=- (Z o
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Now, by invoking a uniform law of large numbers together with consistency,

2 .
5 By (78 log fo(w:) ) = —1Iy.
0

Z o2 9 log fo(z:)
0606’

0000’

Also, by the central limit theorem,

\FZ alogf9 4 N(0, Ip).

Then, by the continuous-mapping theorem and Slutzky’s theorem, we get
the influence-function representation

\/ﬁ( Z —1 810gf9 1’1)

+ 0p(1)

and we have the following result (note we use the information equality here).

Theorem 15 (Optimality of maximum likelihood)

Under regularity conditions,
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Variance estimation

The information matrix—and, hence, the asymptotic variance of maximum
likelihood—can be estimated.

There are two obvious choices.

The first follows from its definition as the variance of the score:

1 <~ [ dlog fo(x:) log fo(xs)
HZ ( 00 00’ )

i=1 2 -
The second follows from the information equality:

1 Z 0? 1ng9 i)
©0000"

In both cases, a uniform law of large numbers can be used to show consistency.

The square root of the diagonal entries (of the inverse) give (estimated)
standard errors on the maximume-likelihood estimator (after dividing through
by v/n) and so can serve to assess its precision. They will equally serve us in
testing later on.
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Labor-force participation

Consider the decision of married women to participate to labor market, y;.

Individuals make decisions based on their own situation/characteristics, x;.
PSID has data on a variety of characteristics (age, education, number of
children, and so on).

Standard Bernoulli is too simple to capture this dependence on observable
characteristics.

A (possible) specification for a conditional model would be
P = Ply: = 1]a:) = O(aB).

Here, choice probabilities are heterogenous in characteristics.

We can derive an econometric model from a specification of an economic
model for the women’s decision problem:

yi =1 < u(xs, &) > 0;
u(zi, ;) is ¢’s utility from working; €; is not observed to the econometrician.

Our specification has u(z;,&;) = 253 + ¢; for &; ~ N(0, 1) independent of z;. ,
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. probit inlf educ exper expersq age kidsltb kidsgeb

[teration B:
[teration 1:
[teration 2:

log likelihood =
log likelihood =
log likelihood = -404,44693

-514 8732
-495.33752

[teration 3: log likelihood -404 4461
[teration 4: log likelihood -404 4461
’robit regression Number of obs = 753
LR chi2(6) = 220.85
Prob > chi2 = 0. 0000
_og likelihood = -4@4.4461 Pseudo R2 = 0.2145
inlf Coef. Std. Err. 2 P>lzl [95% Conf. Interval]
educ .1098675  .0236192 4.65 0.000 0635747 . 1561603
exper .1259602  .0186456 6.76 0.000 . 0894154 .1625049
expersq -.001843 0005967 -3.09 0.002 -.0030125 -.0006736
age -.05629 0083529 -6.74  0.000 -.0726614 -.0399186
kidslt6 -.8597359 1174379 -7.32  0.000 -1.08991 -.6295618
kidsge6 0305573 0434229 0.70 ©0.482 -.10545499 1156645
_cons 4007683 50461 0.79  0.427 -.5882492 1.389786
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What are the parameters of interest in the probit model?
Take x; scalar continuous for a moment.
The average marginal effect is

OE(yilz;) 0% (xiB)

D2, o B o(x:f)-

This is nonlinear and heterogenous.

Can look at the distribution of this marginal effect (in x;), and its functionals.

For example, the mean

- (%) — BE(d(x:8)).

The maximum-likelihood estimator is
b= S fotwid).
i=1

To obtain a standard error, use the Delta method.

We can also look at other functionals of the distribution of the marginal

effects.
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. margins, dydx(educ exper expersq age kidslt6é kidsge6)

Average marginal effects Number of obs = 753
Model VCE ¢ 0IM

Expression : Pr(inlf), predict()
dy/dx w.r.t. : educ exper expersq age kidslt6 kidsget

Delta-method
dy/dx  Std. Err. z P>lzl [95% Conf. Interval]

educ .0332836  .0068685 4.85 0.000 .0198215 8467456
exper .@381587  .0@51453 7.42  0.000 0280742 3482433
expersq -.0005583  ,0001775 -3.15 0.002 -.0009062 -.0002104
age | -.0170527 .0023@99  -7.38 0.000  -.0215799 -.0125254
kidslté | -.26@04509 .0317991  -8.19 0.000 -.322776  -.1981259
kidsge6 . 0892571 013141 0.70 ©0.481  -.0164988 0350131
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Classical linear regression

The classical linear regression model is an extension of the location/scale
model from above in that it adds regressors.

Data on outcome y; and a (column) vector of regressors (or covariates or
explanatory variables) ;.

The model is
yilzs ~ N(38,0%),

and 8 = (8’,0°)". Equivalently (and more commonly) we can write the model
as
yi = =3B + &4, eilzi ~ N(0,07).

Unless explicitely stated otherwise the first covariate is taken to be a constant
term.

This is a simple model for analyzing how the distribution of y; changes with
x;. Here, only impact is through the mean:

E(yi|vi) = 2iB.

107 / 318



Often convenient to look at this model in matrix form.

We have a set of n equations with k regressors, as in

Y1 1,1 Ti2 v 1,k ﬂl €1
Y2 r2,1  T2,2 T2,k 62 &2

= . + ,
Yn Tn,1 In,2 e In,k ﬁk En

which we write as

y=XpB+e, e ~ N(0,0°I).
The log-likelihood (conditional on the regressors) then is

s I @@ 5 (y—XB)(y— XP)
R8s~ 52 " =gl 20

i

108 / 318



The score equation for 3 is

It has the unique solution
B — (X/X)—lX/y
(independent of o) provided that the inverse of the matrix X’X exists.
This is known as the ordinary least-squares estimator.
So, B is uniquely defined if X has maximal rank. This is the well-known

‘no-multicolinearity condition’. No column of X can be written as a linear
combination of the other columns.

A simple counter-example is the dummy-variable trap, where the regressors
would be a constant and a collection of dummies for events whose union
happens with probability one.
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Say, z; = (1,d;,1 — d;)’ where d; is a binary indicator.
Then x;,1 = x4,2 + x;,3 for all i and the rank condition fails.

The model
yi=P1+difa+ (1 —di)Bs+e:

is observationally-equivalent to the three-parameter/two-regressor model
yi = (B1+ Bs) + di(B2 — B3) +ei = a1 + diz + &

We can only learn the reduced-form parameters (a1, a2). The identified set
for 8 is

{BER: f1+ B3 =01,p2 — B3 = az}.
For example, given 83, we can back out (81, 82) but, without this knowledge,
we can only say things such as 81 — 2 = a1 — a».
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As another example of identification failure, suppose that we do not observe
y; in the data but, instead, observe variables Y, <7 for which we know that

Y, Sy Sy,

(income data in social security records, for example, is often bracketed in
this way). Here we cannot even compute the value of the likelihood.

Then the conditional mean is only restricted by
By |v) < 28 < E(g,Jw:)
(where we use E(y;|z;) = x}8).
An implication is that
E(wiy,) < B(wiv;) B < B(x:7,).
We can estimate all 8 compatible with this moment inequality by the set
[8, 8], with

B=(X'X)"X"y, f=(X'X)"'X'y

in obvious notation.
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We will write
gy=XpB, e=y-Xp,
for fitted values and residuals, respectively.
‘We have the decomposition
Yy=y+ée,
where the fitted values and residuals are uncorrelated, i.e., §'& = 0. Indeed,

the score equation at B equals
X'e
0,

so we can say that B gives us that linear combination of the regressors for

which residuals and regressors are exactly uncorrelated.

An implication is that
/
Yy =

€10,1]

and so the uncentered R?

Yy
gives a relative contribution of the variation in fitted values to the variation
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More popular to report is the (centered) R?, which looks at deviations from
the mean, as
E
g o ESS _ | SSR
TSS TSS
where the total sum of squares decomposes as

n

TSS = Zn:(yz- 9P => (i -9+ zn:éf = ESS + SSR,
i=1

i=1 i=1

into the explained sum of squares and sum of squared residuals (note that

9 =7 because ), & = 0).

The intuition is that we want to compare the improvement in fit of a model
with regressors to a model without regressors.

Such a desire for fit comes from the use of the regression model to form linear
predictions.
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The vector y is a point in R™. The column space of the n X k matrix X is
the subspace of linear combinations

X ={a € R":a = Xb for some vector b}.

That is, X is the vector space spanned by the columns of X. If rank X =k
the columns of X are basis vectors for X.

The orthogonal projection of y onto X is the solution to

minly — a|| = min|ly — Xb|| = min /(y — Xb)'(y — X)
aeX bERK bERK
and equals .
y=Xp=X(X'X)"'X'y=Pxy.
The deviation of y from its projection is
é=y—-y=y-Pxy=(I-Px)y=Mxy,

and lives in the orthogonal complement X1, so §'& = 0. The projection
matrices

Px=X(X'X)'X, Mx=I-Px=I-XX'X)"'X/,
will prove convenient. Note that Px = P’ and P% = Px (and the same

for M x) and that PxM x = 0.
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Least squares projection in a three-dimensional space:
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Partition X = (X1, X2) so that

y=X161+ X2062+¢

A XiX: XiXe \ ly
B ) U X4X:1 X4HXo Xbhy )

Some algebra using formulae for partitioned matrix inversion shows that

and, hence,

B = (X1Mx,X1)" (X' Mx,y)
(and likewise for f3s).
M x,y is the residual vector of a regression of y on Xo.
M x, X is the residual matrix of a regression of the columns of X; on Xo.

These residuals are uncorrelated with X». Moreover, M x,y is y, and
M x, X1 is X1, respectively, after their linear dependence on X2 has been
filtered out. Bl is the slope coefficient in a regression of these residuals on
each other.

This gives (multiple) least squares its partialling-out interpretation. The
results is known as the Frisch-Waugh-Lovell theorem.
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The estimator 3 is (conditionally) unbiased,
E(BIX) = E(X'X)"' X'y|X) = (X'X) ' X'E(y|X) = 5
(because E(y|X) = X ). Its variance is
var(B1X) = E((8 - B)(8 — BY'|X)
=B(X'X) ' X'ee' X (X' X)) X)
=(X'X)"'X'E(e| X)X(X'X) ™"
=(X'X)"' X1, X(X'X)"!
= (X'X)""
In fact, its exact (conditional) distribution is normal,
B~ N(Bo* (X X)),

because, for any conformable non-stochastic matrix A, Ae ~ N(0,02AA’),
and thus also for A = (X'X)7' X",

It is also best unbiased, as 8 — 8 = (X’'X)"'X'e is proportional to the
score equation at the truth (X’e/o?), with factor of proportionality equal to
(X' X)L
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The score equation for o2 is

_n o y=Xp)(y-Xp)

o2

which, given B, has solution

n—k
Indeed,
E(é,—é X) _ E(yMxy|X) _ E (e'Mxe|X) :Ugtr(MX) :GQn—k’
n n n n n
because

tr(Mx)=tr(I, — Px) =tr(I,) —tr(Px)=n—k;

using that tr(Px) = tr(X (X' X) ™' X’) = tr( X' X (X' X)™1) = tr(Iy) = k.
Finally,
(n—k)5*/o* ~ X2k
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Now consider the behavior of the estimators as n — co. We let ¥ = E(x;x}).

First, .
B-B=(X'X)"Xe,
and X'x X
2y, € 2y,
n n

so that 3 % B by the continuous-mapping theorem.

Next, we have

R o1 X'xX\ ' X'e
Vs - 8) = vaxx) " xe = (XX) Xe,
and ,
)\jﬁsizv(o,ﬁz).
So,

V(B - B) = % Zi;zlmia‘i +0p(1) 4 N(0,0%27h).

The influence function here is ¥ 'z;e;.
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For the variance estimator,

52 _ €€
_ (Z—XB)’(y—XB)
_ (X(BfB?H)’(X(BfBHe)
_ge BB X3 5) +2(B_ﬂ)/ans
ee

=—+ Op(n71/2)7
n
because |3 — 8] = Op(n~'/?), X'X = Op(n) and X'e = o0,(n).

Therefore,

e'e — E(ee)

+o0,(1 Z 2) +0,(1) % N(0,20)

(recall that, under normality, E(}) = 30%.)

This estimator is best asymptotically unbiased (and so is &2).
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Production and cost function

Suppose a firm creates output according to Cobb-Douglas technology. The
associated cost function is linear in logs. The regressors are a constant term,
(the log of) total output, and the log of the price of inputs (labor, capital,
and so on).

. regress log_cost log_output log_wage log_capital log_fuel

Source S5 df MS Number of obs = 145

F(C 4, 148) = 437.69

Model 269.514813 4 67,3787034 Prob = F = 0.0000
Residual 21,5520008 140 153942927 R-squared = 0.9260
Adj R-squared = 0.9238

Total 291.066823 144 2.02129738 Root MSE = .39236
log_cost Coef. Std. Err. t P=ltl [95% Conf. Interval]
log_output .7203941  .0174664  41.24 0.000 .685862 7549262
log_wage .4363412 2910476 1.50 0.136 -.1399756  1.011758
log_capital -.2198882 ,3394286  -0.65 0.518 -. 8909567 4511803
log_fuel .4265169 1003692 4,25 0.000 .2280817 .6249521
_cons -3,526503 1.774366 -1.99 0.049 -7.034521  -,0184857

The coefficients on the input prices are elasticities.
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Poisson regression

The linear regression model will typically be inappropriate when data are
not continuous.

An example is y; € N, i.e., count data.
Patent-application data fits this framework.

A Poisson regression model has (conditional) mass function

Yi ,—Hi

't e ’

ZZ/.I > ,ui=€m1B~
7.

Remember that p; = ¢%# is the conditional mean of the outcome variable.
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The log-likelihood (up to a constant) is

n

Z(ym;ﬁ - ex;ﬁ) + constant.

i=1

The score equation is
E zi(y: — e =8y = 0,

and the Hessian matrix is

n
- Z(mlx;) e"? < 0.
i=1

The maximume-likelihood estimator of § is not unbiased.

It is best asymptotically unbiased, however, with limit distribution

Va(B — B) 5 N, E(ziaiu) ™).
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Patent applications (innovation) and R&D spending

The # of patents applied for on R&D spending, stratified by sector.

Poisson regression Mumber of obs = 181

Wald chiz{(1e) = 250144.38

Log Llikelihood = =-28112.312 Prob > chiz = @.0000
p9e Coef. Std. Err. z P=|z| [95% Conf. Intervall

aerosp -2.384742 .5506521 -4.33
chemist =.4147255 .1063933 =3.90
computer -2.176611 .1299919 -16.74
machines -3.423707 .1746431 -19.68@

0.000 -3.464001 -1.305484
-.6232525 -.2061985
-2.43139 -1.921832

-3.766001 -3.081413

vehicles 1.47125 .2608972 5.64 0.000 .959901 1.982599
c.lrog#c.aerosp .9357491 .B998713 10.30 0.000 .7576445 1.113854
c.lr9@#c.chemist .91150845 .8164141 55.53 0.000 .8793336 .9436755
c.lr9@#c. computer 1.087077 .0177896 61.11 0.000 1.85221 1.121944
c.lro#c.machines 1.381847 .B282344 48.94 0.000 1.326509 1.437186
c.lr3@#c.vehicles .3479149 .B356582 9.76 0.000 .2780262 .4178037
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We can test whether the impact of R&D spending on innovation is different
across sectors.

. test c.lr90#c.aerosp =c.lr9@#c.chemist=c.lr9@#c.computer=c.lr9@#c.machines=c.lr9@#c.vehicles

[p90@]c.lr90#c
[p90@]c.lr90#c
[p9@8]c.lr9d#c
[p90@]c.lr90#c

chi2( 4)
Prob > chi2

.aerosp
.aerosp
.aerosp
.aerosp

= 569.
= 8.

- [p9@]c.lr90#c.
- [p9@]c.lr90#c.
= [p98]c.lr90#c.
- [p9@]c.lr90#c.

85
LLL

chemist = @

computer = @
machines = @
vehicles = @
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Examples of maximum likelihood

Arellano, M. and C. Meghir (1992). Female labour supply and on-the-job search: An empirical
model estimated using complementary data sets. Review of Economic Studies 59, 537—557.

Blundell, R., P.-A. Chiappori, T. Magnac, and C. Meghir (2007). Collective labour supply:
Heterogeneity and non-participation. Review of Economic Studies 74, 417-445.

Heckman, J. J. (1974). Shadow prices, market wages, and labor supply. Econometrica 42, 679—
694.

Magnac, T. (1991). Segmented or competitive labor markets. Econometrica 59, 165-187.

Rust, J. (1987). Optimal replacement of GMC bus engines: An empirical model of Harold
Zurcher. Econometrica 55, 999-1033.

Tobin, J. (1958). Estimation of relationships from limited dependent variables. Econometrica
26, 24-36.
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Bayesian estimation

» Skip the remainder of this section

Before seeing the data you have beliefs about 6. Suppose we can summarize
those beliefs into a distribution function 7(6) on ©, the prior.

Upon seeing the data we can evaluate the distribution of the sample,
[T, fo(x:), at any 6 € ©.

When confronted with the data we may alter our beliefs about 6. Bayes rule
gives the posterior as

. H?:l fe(wl)ﬂ-(o)
m(0z1,. .., an) = Jo T, fulzi) m(u) du’

When prior is a proper distribution, so is the posterior.

The updated beliefs summarized in the posterior distribution can be used to
construct a point estimator if desired. An example is

Jo0m(Olz1,. .. xn)db,
the posterior mean.
Other natural choices would be the posterior median and mode.
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Normal example

Take
€T ~ N(G, 0'2)

(with o2 known for simplicity), so that

n 2 o
-0 1 _l(zizl(zz 7n)? | n(0=7n) )
(1'17- . ZCTL) H ¢ (xz ) _ ( e 2 -2 —2 .

271'0'2)"/2

Suppose that

w(0) = 1o (° ”) o (),

27r7'2)1/2
i.e., our prior belief is that 6 ~ N(u,7%).

A calculation gives the posterior as normal, i.e.,

2 2 2 2
9|(a:1,...,:rn)~N< T Tn + o’ /n Ly T o /n )

24+02/n"" " 24 02/n" T2 £ 02/n
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The posterior mean is the point estimator

72 a*/n

T2 +02/nxn + 72 +02/n’u’

which is a weighted average of the sample mean T, (the Frequentist estima-
tor) and the prior mean pu.

Note that this estimator is not unbiased.
In fact, Bayesian posterior means are never unbiased.

As n — oo, the relative contribution of the prior vanishes and
Ol (x1,...,20) ~ N (EH,JQ/n) ,

which is the Frequentist asymptotic approximation.
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Bernstein-von Mises theorem

The similarity between the Bayesian posterior and the Frequentist
asymptotic-distribution approximation in the above example holds much
more generally.

This is the Bernstein-von Mises result.

It states that, in an appropriate metric (known as the total-variation norm),
the difference between mw(6|z1,...,zs) and

N(0,1," /n)

converges to zero in probability as n — oco.

One implication is that both procedures are asymptotically equivalent.
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James-Stein estimation

Remember the posterior mean in our example was

2 _— a*/n u=(1 M> fn+(m> A

2o/ " A% 1+ (0/m)/n 1+ (o2/72)/n

For example, when p = 0 (for notational simplicity) we have

2/ 2 2
PR G/ VAL Wy AV L
1+ (02/72)/n T2+ 02%2/n
The term in brackets lies in (0,1). So, this estimator is downward biased.
The bias is introduced by the shrinkage of T,, towards the prior mean of zero.

A multivariate version would have & ~ N (8, (¢%/n) I,,) and 8 ~ N(0,7%1,,)

with shrinkage estimator
2,2
IR
1+ (02/72)/n
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The James-Stein estimator (assuming that o2 is known and that m > 2) is

<1 —o? m-—z 2) T
[l

‘While this estimator is biased, we have

E(lz—0]?) > E <H (1 - 027‘%3 z -

as soon as m > 2.

)

So, in terms of estimation risk (as measured by expected squared loss), the
James-Stein estimator dominates the Frequentist sample mean estimator .

The key is that shrinkage reduces variance. Indeed, taking the infeasible
estimator for simplicity

= (72 - ”27/172) I, +o(n™?b).
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TESTING IN PARAMETRIC PROBLEMS
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General discussion:
Casella and Berger, Chapter 8
Hansen I, Chapter 13 and 14

Testing in the likelihood framework:
Davidson and MacKinnon, Chapter 13
Hansen II, Chapter 9

Classical linear regression model:

Goldberger, Chapters 19-21
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Simple hypothesis and likelihood ratio

Suppose we wish to test the simple null Hy : § = 6y against the simple
alternative Hy : 0 = 6.

The data distribution is completely specified under both null and alternative.
Write N
0,(0) = eln(®) er(l’i)

i=1

for the likelihood and define the likelihood ratio as
£, (00)
0,(01)°

If Hy is false we would expect €5, (00) /¢, (61) to be small.

135 / 318



—~

136 / 318



A decision rule based on the likelihood ratio is to

Reject the null in favor of the alternative when

£n(6o)
£n(01)

<,

Accept the null when

for a chosen value c.
We might wrongfully reject the null. This is called a type-I error.

The significance level or size of the test is

o (0 < o).

We might wrongfully accept the null. This is called a type-II error.

o, (0 < o).

The power of the test is
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Suppose that
x; ~ N(0,0°)

for known o2.

(From before; see Slide 49) the density of the data is

1 _1(2?=1(wi—5n)2> _l<n(9—in)2)
2 o2 2 o2
e e

(2ma2)n/2
The likelihood ratio thus is
%<n(90—fn)2>
_ _ 00—01 (Tpn—0, 09 —6
¢ i = e 3 (@00~ Ea-00?) _ T (B )

_1 "(91 _En)z
e’ 2

If 9 < 01 the likelihood ratio is no greater than ¢ when

En_90 >C*
o/\yn T

for some c*.

138 / 318



So a level « test is obtained on choosing ¢* so that

Po, (ﬁ:ég‘;; < c) = Py, <§;/?/%° > c*) =1-®(c") =q,

which requires that
=31 - a) = za,

the (1 — a)th quantile of the standard-normal distribution. These values are
tabulated.

Then the decision rule we obtain is that, if,

Tn — Oo
> Za
o/ =

we reject the null in favor of the alternative.

)
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The standard-normal distribution

The c.d.f. of the standard normal distribution

P(z)

= 0.00 0.01 0.02 0.03 0.04 0.056 008 0.07 0.08 0.09
0.0 | 020000 050399 0.207%% 0.51197 0.51505 051984 0.52392 052700 053189  0.53af6
0.1 | 053953 0.54380 054776 0.55172 0.55567 0.53962 056356 056748 057142 0.57ad5
0.2 | 057926 0.58317 058706 0.59095 0.59453 059871 060257 06064} 01026 0.€1409
0.3 | 0E1791 062172 062552 062030 (063307 0E36ET 064065 064431 064307 065173
0.4 | 065342 085910 O0.86276 066640 087008 067364 067724 063082 063439  0.69793
0.5 | 069146 069497 089547 070194 O0.70540 070884 0.71226 071566 071904  0.72240
0.6 | 072578 0.72007 0.78237 0.73sFF 0.73891  0.74215  0.74537  0.74EET  0.7EITE 0LTE490
0.7 | 075804 076115 0.76424 096730 077085 077337 077637 07793 0.7E2E0 0784
0.8 | 078814 0.7910F 0.7938% 0.79673 0.79955 0.90234 0.80s11 0.507Es 051057 051327
0% | 051594 08189 03N 052871 0.F2639 082894 0334T DEIIE  0ETEdE  0.33891
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The power of the test is

Note that the power increases when

the difference 61 — 0y (> 0 here) increases; and

the samples size n increases.

The latter observation implies that

En - 90 n—00
P, _ > — 1
" < o/ = > |

i.e., if the null is false this will be spotted with probability approaching one.
This is called consistency of a test.
Note that if, in stead, 8y > 601, the decision rule becomes that, if,

Tn — o
< —
o/vn

we reject the null in favor of the alternative.

Zay
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Now take the reverse situation where

zi ~ N(p,0)
and p is known.
Wish to test Ho : 0 = 0y against Hy : 0 = 0.

The likelihood ratio is

161 (@i—w)?

—0 n
(61/60)""* B R T T

If 8y < 07 this is small when

2

i (zi — 1)
i=1 %o
is large (and vice versa). Now, under the null, this statistic is X2 and so
- (zi — M)2 2 _
P90 (ZZ;QO>X7L,QL = qQ,

where X7 ,, is the (1 — a)th quantile of the x} distribution. The power is the
probability that a x5 is greater than x2 . (60/61).
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The y2-distribution

The quantile function of the y* distribution

qu(ax)

a

0.500 0.600 0.700 0.800 0.850 0.900 0.925 0.950 0.975 0.990 0.995 0.999 0.995
v
1 0.455 0708 1.074 1.642 2072 2706 3.170 3.841 5.024 6.635 7.879 10.83 12.12
2 1.386 1.833 2408 3.219 3.794 4605 5.181 5.991 7.378 9210 10.60 13.82 15.20
3 2366 2946 3.666 4.642 5317 6.251 6.905 7815 0.348 11.34 1284 16.27 17.73
4 3.357 4.045 4.878 5989 6.745 7.779 B8.496 9.488 11.14 13.28 14.86 18.47 20.00
5 4.351 5.132 6.064 7.280 8.115 9.236 10.01 11.07 1283 15.09 16.75 2052 22.11
6 5.348 6.211 7.231 8.558 9.446 10.64 11.47 1259 1445 16.81 18.5656 2246 24.10
7 6.346 7.283 8.383 9.803 10.75 12.02 1288 14.07 16.01 1848 20.28 24.32 26.02
8 7.344 8351 0524 11.03 1203 1336 14.27 1551 1753 20.09 2195 26.12 27.87
9 8343 9414 1066 1224 1329 1468 1563 16.92 19.02 21.67 23.59 27.88 20.67
10 | 9.342 1047 11.78 1344 1453 1599 1697 1831 2048 23.21 25.19  29.59 31.42
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Exponential

Take x; to be exponentially distribution, i.e.,

e—a:/e
fo(z) = 7 z>0, 6>0.

Note that the likelihood is
1 |’ﬂ| —xz;/0 1 —nTyp /0

and so the likelihood-ratio statistic for simple null and alternative equals

1 _—nzn/0p

L n
o ¢ 01\" —nwn Y
— = | — e [Ch g B
gine—"mn/el 60

1

If 61 > 6o this statistic is small when nz,, is large. Now,

NTy, = Z x; ~ Gamma(n, 0)

1=1

(or Erlang(n,1/60) as n is an integer) so size is easily controlled for any n.
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Most powerful test

Theorem 16 (Neyman-Pearson lemma)

When both the null and alternative hypothesis are simple, the likelihood
ratio test that rejects the null when

for a constant c such that

(e <) =

is the most powerful test among all level-a tests.
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Composite alternatives and the power function

Now test the simple null Hy : § = 6y against a composite alternative H; :
0 € ©1, where ©; C O.

We can generalize the likelihood ratio to

0 (60)
SuPg, co, én(él)

The data distribution is no longer fully specified under the alternative; there
are many possible alternatives.

A test is uniformly most powerful if it is most powerful against all 6; € ©.

Power is now a function; i.e.,

£n(00)

ey =h (SUPeleel £n(01) < C)
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Unbiased tests

A level-« test is unbiased if
B(0) > «
for all 6 € ©;.

The null is more likely to be rejected when it is false than when it is true.
Unbiasedness is clearly desirable.

We could consider looking for the uniformly most powerful unbiased test.
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Normal (One-sided)

Again take z; ~ N (6, 02) for known o2.

Now test Hop : 0 = 0y against Hy : 0 > 6.

The set of alternatives is thus ©; = {6 € © : @ > 6y}. This is a one-sided
alternative.

Clearly,
él = arg max én(ﬁl) =T, {fn > 00} + 6o {Tn < 90}
61€01

Then,
1 n(@n—00)?
ﬂn(ﬁo) e 2 o
A - = —01)2
En (91) 6_% n(zna291)
_n @n—00)2—(@n—00)% {Fn <00}~ @n —Tn)? {Tn>00}
=e 2 o2

_ oy ()

which is no greater than some constant c if

Zn—"00 Tp—0o *
T {a/\/ﬁ >0}2c : s o



The random variable
z{z > 0}, z ~ N(0,1)
is truncated standard normal with cumulative distribution function

P(z < ¢z > 0) =2 (cp(c*) _ %) :

So, noting that only positive values for ¢* make sense,

PE{z>0}<c")=PEz<cz>0P(z>0)+P(z<0)

-3(e(ur-})-!
= a(c),

and, therefore, the size of our test can be set to a € (0, 1) by setting

=01 -a)=za.
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We get the decision rule
Reject Hyp : 0 = 6 in favor of Hy : 0 > 0 if

Tn —00 [Tn — 6o
0p > za;
NG {a/\/ﬁ ~ }—Z

Accept Hp : 0 = 6 if

T e >0 <

With z, > 0 we can just look at
Reject Hy : 0 = 6 in favor of Hy : 0 > 0 if

ZTn — 0o

o/vn

> Zaj;

Accept Hp : 0 = 6 if
Tn — o
<z

o/vn =

This test is uniformly the most powerful.
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This conclusion follows from the fact that the decision rule is the same as
for the simple alternative § = 6; from above, and that test was the most
powerful for any 61 > 6.

‘We have

ZTn — 0o Tn — 0 6 — 0

P, > 20| =Py | ——= > 24
9(0/\/77 = ) e(o/\/ﬁ = ﬂwﬁ)
so the power function is
0o — 0
1—-d(zo+—+ ).
(2 " a/ﬁ)
This test is consistent.

B(0) is presented graphically below for a setting where 6 = 0 and o = 1,
with a = .05.
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Normal (Two-sided)

Continue to work with x; ~ N(6,0?) for known o2.

Now test Ho : 0 = 6o against Hy : 6 # 6.

The set of alternatives is thus ©; = {# € © : 6 # 0o} = ©\{6}. Thisis a
two-sided alternative.

The likelihood-ratio is simply
T —00 )2
2 (A)
which is no greater than some constant c if

Tn, _90

o/vn

> c*.
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So,

E71_90

o/v/n

P (

which is simply

* * E71_00 *
Zc):l—Pgo(—c < YN §c>

1—(®(c") =P (=) =1—(1—P(—c")—P®(—c")) = 20(—c") = 2(1—®(c")).
Equalizing this probability to o and inverting toward c¢* yields
=071 - a/2) = 242,
giving the decision rule:
Reject Hy : 6 = 6 in favor of H; : 0 # 0 if

Tn 790

a/vn

> Za/2,

and accept the null if not.

Note that we reject if either

Tpn — 0 Tpn — 0
- O<—za/2 or w 0

NG o//n

each of these events has probability «/2 under the null.

> Za/2;
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This test is not uniformly most powerful. In fact, for two-sided alternatives,
such tests cannot exist.

The one-sided tests with size a are better on their respective sides of the
null:
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The two-sided test is unbiased and consistent.

Below are the power functions for two sample sizes.
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Normal (Two-sided; variance unknown)

Again
Ti ~ N(Ha 02)

but now with both z, ¢ unknown.

Consider the hypothesis
Ho : = po, Hy o # po-
The likelihood is

1 I (wmm?
—— < 5€¢ 2
(2mo2)n/2 7

The unconstrained maximizers are
n
JO— 2 -1 _\2
=Ty, 6 =n E (zi —Tn)",
i=1

while, when = 0, maximizing with respect to o2 only yields

n
gt=n"" Z(mz — po)>.

=1
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The likelihood ratio is simply

&2 n/2 . (xn NO)Z —n/2
5 T )
This statistic is smaller than some critical value if and only if
_ 2 _ 2
Tn — MO _ n In — MO
Grw) = (=) Grw)
exceeds some other critical value; where, recall, 5% = 6%n/(n — 1)
But,

—po

a/vn

‘We know that

U/f G/W/\/F G/W/ o 02/02'

qwq

~2

0 o 2
———F— ~ N(0,1 n—1)— ~ .
/\/7’7], (7)7 ( )2 Xn—1;

and so the ratio follows a t distribution with n — 1 degrees of freedom
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The statistic

E'n — Ko ~t L
&/vn e
is commonly called the t-statistic.

Exact inference is thus possible on choosing critical values from Student’s ¢
distribution with n — 1 degrees of freedom.

As n grows, t,—1 approaches the standard normal. So large-sample theory
justifies the use of z, /2 as a critical value.
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Student’s ¢ distribution

The quantile function of the Student’s ¢ distribution

0 g.(a)

0.600 0.700 0.750 0.800 0.850 0.900 0.925 0.950 0.975 0.990 0.995 0.999 0.9995

0.325 0.727 1.000 1376 1.963 3.078 4.165 6.314 12.71 31.82 63.66 318.3 636.6
0.280 0617 0816 1061 1386 1.886 2282 2920 4303 6.965 9.925 2233 3160
0.277 0.584 0.765 0978 1.250 1.638 1.924 2353 3.182 4.541 5.841 10.21 12,92
0.271 0569 0.741 0941 1190 1.533 1.778 2132 2776 3.747 4.604 7.173 8.610
0.267 0.559 0.727 0920 1.156 1476 1.699 2015 2571 3.365 4.032 5.893 6.869
0.265 0.553 0.718 0906 1.134 1.440 1.650 1.943 2.447 3.143 3.707 5.208 5.959
0.263 0549 0.711 0896 1.119 1415 1617 1895 2365 2098 3.499 4785 5.408
0.262 0.546 0.706 0.889 1.108 1.397 1.592 1.860 2306 2.896 3.355 4.501 5.041
0.261 0543 0.703 0.883 1.100 1.383 1574 1833 2262 2.821 3.250 4.207 4.781
0.260 0.542 0.700 0879 1.093 1372 1559 1812 2228 2.764 J3.169 4.144 4.587

SEomuooswn =T

11 | 0.260 0.540 0.697 0876 1.088 1363 1548 1796 2201 2718 3.106 4.025 4.437
12 | 0.259 0.539 0.695 0.873 1.083 1356 1.538 1.782 2179 2.681 3.0556 3.930 4.318
13 | 0.250 0.538 0.6904 0.870 1079 1350 1530 1771 2160 2.650 3.012 3.852 4.221
14 | 0.258 0.537 0.692 0.868 1.076 1345 1523 1.761 2145 2.624 2977 3.787 4.140
15 | 0.258 0.536 0.691 0.866 1.074 1.341 1517 1.753 2131 2.602 2.947 3.733 4.073
16 | 0.258 0.535 0.690 0.865 1.071 1.337 1512 1.746 2120 2.583 2.921 3.686 4.015
17 | 0.257 0.534 0.689 0.863 1.069 1.333 1508 1.740 2.110 2.567 2.808 3.646 3.965
12 | nos =24 neee ARE9 10T 1290 1504 1724 92101 929==9 9@78 2 £10 2 099
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General composite hypothesis

The more general case has both composite null and alternative, as in
Hy : 6 € O, H,:60€0,,

where ©¢ and ©; are subsets of the parameter space ©.
An obvious generalization of the likelihood ratio would be

SUPg, c, £n (60)

SUPg, co, én(el) '
The statistic used above for only the alternative composite is a special case.
Much more common is to work with a likelihood ratio statistic defined as

SUPg,co, ZH(OO) .
SUPgee £n(0)

note that the denominator features the full parameter space. This is often
much easier to work with.
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Connection to maximum likelihood

By definition A
sup £, (0) = £,.(6),
0o
where 0 is the (unconstrained) maximum-likelihood estimator.

Likewise, we can think of

6 = arg Do £,(0)

as the constrained maximume-likelihood estimator obtained on enforcing the
null.

The likelihood ratio is then simply
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Normal (Composite)

x; ~ N(0,0%) for known o>.

Now test Hp : 0 < 0 against H; : 0 > 0.

Here,
0,(0) = T {Tn < 0}, ln(0) = Tn {Tn > 0},
arg max Ly(0) = Tn {Tn < 0} arg max £n(6) = Tn {Tn > 0}
and, also,
arg r&aécfn(e) = Tn.
So,

ZTn \2 o — Tn Tn
SUPgocop n(b0) _ 3 (57uz) sena) _ 3 (570%) |57
SuPg, co, £n(01)
for sign(z) = {= > 0} — {x < 0}, while
Zn \2 = zn )2 Tn
$UPgyceq fn(fo) _ i Gm) @0 U —i(5R) {50l
SUPgco £,(0)
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The latter likelihood ratio is smaller then ¢ when
B U
ACING
for some c¢*. Note that only positive ¢* make sense, otherwise we will never
reject.

For any fixed 6, let
Tn—0

o/vn

Zo =
Then
T Tn *\ = * 2] 1 _ * 6
Pg(a/—ﬁ{g/ﬁ>0}>0)_Pg(ze>c 70/\/5)—1 ‘b(c 70/\/5)

This function is monotone increasing on Oy = (—o0,0]. The size of the test
is

wpvcen P (55 {555 >0} > ) =1 =06 =

so that size control yields the critical value ¢* = ®7'(1 — @) = za.
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The former likelihood ratio is small when either

T *
0< —"_andc" <

NG YN

or when _
T
<0and ¢ < n

G/W o/vn

For any 6 € ©¢ the probability of this happening is

P0(29>0*—#729> O/I)+P9(§9>C*—#,EQ<—#>.
For ¢* > 0 this equals
— * 0 _ * 0
P@(ZQ>C*W)—17¢(C7W)
while for ¢* < 0 this equals

7 9 1 _ * 6
P9(29> /\F)-i-Pg( /\F<Z9< /\/ﬁ)—l @(C 70/\/5).

In either case the supremum over Oq is achieved at 8 = 0 for which we find
that ¢ = 2, yields size control. Again, for any reasonable size the critical
value is positive.
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Likelihood-ratio test

Now consider a general setting where 0 is a k-dimensional vector and
Hy :r(8) =0, H, :r(0) #0,

for a continuously-differentiable m-dimensional function r.

We will denote the m x k Jacobian matrix by R().

Exact size control is difficult in general.

A general approach that is asymptotically valid is the decision rule
—2log L(Gi) > an,a;
n(0)
£,(0) ’

2108 (£2(0)/€2(0)) = 2(Ln(8) = Ln(8)).

Reject the null if

Accept the null if

Note that
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Asymptotic distribution under the null

The validity of the test procedure comes from the following theorem.

Theorem 17 (Limit distribution of the Likelihood-ratio statistic)

Under the null,

as n — 0.
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We work under the null. A Taylor expansion gives
La(6) — La(6) = -

It can be shown that (under the null)

6 —0) In(6 — 6) + 0p(1).

810g fg (1)

V(6 —6) = I;'R'(RI; 'R') "' RI, WZ S Fon(d),

where R = R(6). Plugging this into the expansion gives 2(L,(0) — L.(0)) as

(ng‘l : Z mogfg 2 9) (RI;'R)™ <RI§1 \FZ 7810% v 9)

(up to o0p(1) terms). But, as

0 log fo

d

N(0,RI; 'R),

RI;! fz

0

this quadratric form is asymptotically x2,. O
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Analysis of the constrained estimator

Completing the proof requires finding the asymptotic distribution of

0= Ly (6).
arg max n(0)
This estimator maximizes the Lagrangian problem

Ln(6) + N7 (6).

The first-order conditions are

OLn(0)
90

6

We can Taylor expand

OLn(0)| _ 2Ln(®)| | OLnlO)] 5 _
o |,~ o0 |, asaw |, D)
_ Z alogfe )|ty (6 0) + 0p(1),
0

and 7(0) = 7(8) + R(§ — 0) 4+ 0,(1) = R(f — ) 4 0,(1) (enforcing the null
r(0) = 0).
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Plugging the expansions into the first-order conditions and re-arranging
yields the system of equations
9 )

nfl/z( —nly R ) ( 0—0 ) X, el
R 0 X 0

(up to op(1) terms).

A block-inversion formula shows that
—nl, 0 R -t
R 0

—n '+ P R(RI YR TIRI;Y I RY(RI;TR) Y
(RI;'R)'RI;! n(RI;'R)™! :

equals
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Then we obtain

Vil —0) = (17" — I R/(RI; R RI;) ZM +o0,(1),
f 0
which implies that
V(- 0) = I; ' R'(RI; 'R)"'RI; ") fzalogif”’) +o0p(1)
0

under the null.

For future reference we also note that

—(RI;'R)'RI;" Z 810gf9 @)1 4o, (1) 5 N (O, (RI;'R)™).

6

8>
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\2-statistic

The derivation of the limit distribution of the likelihood-ratio statistic shows
that 5 o

n(6—0) 16 — 6) % 2,
under the null.

Let Iy be a consistent estimator of the information under the null. Obvious
choices are

1 aZan)} - _1iyw 82 log fo(x;)
i=1

T n 86067 g — T n 56067

and

1\ Olog fo(x;) | Olog fo(wi)
* i ((2eefpten| ey

’

1 Olog fg(x;) 1 0log fo(x4)
) — (3 3i, Zesfplen| (137 Zeshate

note that recentering of the score is needed here as 6 does not maximize the
unconstrained likelihood problem, in general.

)

0
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Slutzky’s theorem gives us the following result.

Theorem 18 (Limit distribution of the y*-statistic)
Under the null,

as n — 0.

This result gives us an alternative, but asymptotically equivalent, testing
procedure.

The intuition behind a test based on this result is to look at a distance
between the constrained and the unconstrained estimators which, under the
null, should be small.

173 / 318



Score statistic

The analysis of the constrained estimator implies the following result.

Theorem 19 (Limit distribution of the Score statistic)

Under the null,
0L, (0)
o0

as n — 0.

This statistic is also known as the Lagrange-multiplier statistic as it can be

written as R
X(R(@)IG R(0) ) N
n

where X is the Lagrangian multiplier for the constraint () = 0.

One interpretation for this is that, if the null is true, the constraint should
be ineffective, aside from sampling error, so A should be small.

Another interpretation is that, under the null, the unconstrained score should
be close to zero at 6.

174 / 318



Wald statistic

Rather than evaluating some distance between 6 and 0 as in the x2-statistic

n (6 —0)Iy(6 —6),
we may look at a distance of () from zero (the null). Because we have that

r(é) = r(é) —r(@)=R (é — é) + 0p(1)

under the null, we equally have the following.

Theorem 20 (Limit distribution of the Wald statistic)
Under the null,
nr(9) (RO ' RO)) ™ r(6) = xin,

as n — 0.
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The Wald statistic can equally be derived without reference to a constrained
estimation problem.

Because
V(@ —60) % N(0,I;1) and r(6) = R (6 — 6) + 0p(1),
under the null, the Delta method gives
Vnr(@) % N(0,RI;'R),

and so also

Theorem 21 (Limit distribution of the Wald statistic (cont’d))

Under the null,
nr(6) (R(O)I; ' RO)) ' () 5 X7,
as n — oo.

Here it makes sense to use an unconstrained estimator of the information.
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All test statistics can be used in the same way to perform (asymptotically)
valid inference.

In small samples they can lead to different test conclusions.
The likelihood-ratio statistic is attractive because

m It does not require an estimator of Ip;

m [t is invariant with respect to one-to one transformations.

The second point is important as it implies that the test conclusion is the
same no matter how the null is formulated.

The score statistic is attractive because it requires estimation only under the
null, which is often easier.

In the likelihood context there is no strong argument in favor of the Wald
statistic. In fact it is not likelihood based. Its power lies in that it can be
applied more generally.
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Exponential

The exponential distribution is

6—.79/0

folz) = —5

Its mean is 6.
We set up several tests for the null Hy : 6 = 0y against 6 # 6.
First note that

Ln(0) = =Y (2:/0 +log0) = —nn /0 — nlog.

i=1
Hence,

OLn(0) _ (,, 10)(z PLa(0) _ (2 (om

Therefore, § = T,, and I, /n=0%/n.
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The likelihood-ratio statistic is

—2(Ln(00) — Ln(0)) = 2n ((% - 1> ~log %) :

The score statistic is

n(@n /00 — 1)° = En—b0)

0%/n
The x2-statistic and the Wald statistic are
(fn - 90)2 (En — 90)2
02/n 7% /n

respectively. The latter is again the usual t-statistic, which should not be
surprising here.
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Classical linear regression

Recall the setup
Yilzi ~ N(:c;ﬁ, ‘72)

or, in matrix notation,

y=XpB+e, e ~ N(0,0°I).

The log-likelihood (up to a constant) is

2 (y— XB)'(y — XB)
202 ’

Ln(B,0%) = —g log o

Let SSRg = (y — XB)'(y — X 3). Then the profiled log-likelihood for § is
Lu(8) = — 5 log (SSRp) = log(SSR;™'*)

(again up to a constant), and

0a(B) o SSR;™2.
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We consider a set of m linear restrictions on 8. We express the null hypothesis
as
RB =,

where R is an m X k matrix and r and is an m-vector.
The m restrictions are non-redundant, so rank R = m.

The unconstrained estimator solves
min SSRs = min(y — X8)'(y — X5)
and equals R
B=(X'X)"Xy,

as before.

The constrained estimator solves the Lagrangian problem

mﬁin %SSRg —XN(RB — 7).
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The first-order conditions are
X'(y—XB)—RX=0, RB—r=0.
Re-arranging the first condition gives
(X'X)8=X'y—R'\

and so

f=(X'X)"'"X'y— (X'X)"'"RA=5—(X'X)"'R\

Further, pre-multiplying by R and enforcing that Rj3 = r gives
RB=RA-R(X'X)'RA=r,

which we solve for A to obtain
A= (R(X'X)"'R)YM(RB —1).

We then find that

B=p—(X'X)""R(R(X'X)""R') " (RB 7).
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The likelihood ratio statistic is

( SSRB> e
SSR; ’
which is small when the ratio in brackets is large. Now,
SSRg i SSRz — SSR;
SSR;

SSR;

where
SSRﬁ =ée=¢e'Mxe

and, using that y = X3 + & to simplify SSRz = (y — XB) (y— XB) to
SSR; =€'Mxe + (5~ B)(X'X)(5 - B).

Hence,
SSR; -SSRy (8- B) (X' X)(B— )
SSRB o E’Mxe
(RB—r)(R(X'X)"'R)) " (RB )
e'Mxe '
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Note that, under the null,

RB—r~N(0,0’R(X'X)"'R))

such that
SSRz — SSRB 5
——— "~ Xm-
o
‘We also know that
SSRﬁ 52
o2 = (nik)o_i ~ Xn—k

Lastly, both terms are independent because they are functions of /3’ and g,
respectively. These variables are jointly normal and independent, as the
covariance is

E(B—-B)E|X)=E((X'X) 'X'ee’ Mx|X) =o*(X'X) ' X'Mx =0
(using that M x X = 0)

Therefore,
n—k SSR; — SSR;

F7 —K>
m SSR; non—k

where F' is Snedecor’s F' distribution.

184 / 318



Snedecor’s F' distribution

The quantile function of the F' distribution

{9
0 ey 1oz (X)
=09
¥
1 2 3 4 1] 6 7 8 9 10 12 15 20 30 50 o0
L]
1 39.9 495 536 558 582 589 594 599 602 60.7 612
2 853 9.00 916 9.4 933 935 937 938 939 9 .41 942
3 5.04 D46 DAY L34 6.28 527 525 524 51 5. 22 5.
4 454 432 419 411 401 398 395 394 392 3. 90 387
il 4.06 378 362 3.52 440 337 334 342 330 3,27 3
[ 329 318 287 284
T 307 296 263 2.59
-] 282 281 246 242
9 281 269 23 230
10 273 261 224 220
11 3.23 286 266 254 245 239 234 230 227 2325 2.21 217 212 208 24 197
12 | 318 281 261 248 239 233 2328 224 221 219 2.15 210 206 201 197 190
13 | 314 276 256 243 235 228 223 220 216 214 2.10 206 201 196 192 18
14 | 310 273 252 239 231 224 219 215 212 210 2.06 201 196 191 15T 1.80
15 | 3.07 270 249 236 227 221 216 212 209 206 2.02 197 192 187 18 I.Tq
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A particular F' test

A popular restriction in a regression model that includes a constant term is
that all slopes are zero.

Under the null we only estimate a constant term, i.e., 8 = Y,, and so we
have

SSRs=> (yi —¥,)" =TSS.
i=1
It follows that the F-statistic can be written as
n—k SSRg—SSR; n—-kTSS—SSR; n—k1-R?

m SSRE T om SS’RB m R2

with R? = SSR;/TSS the (centered) coefficient of determination of the
unrestricted model.
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F versus t

When we test only the restriction 8. = Bk, the F-statistic is

(Be = Bro) (X' X)) ™ (B = Bro) _ ( Be = Bro )
52 G2[(X' X))k n

This is the square of the usual t-statistic

ﬂn - /BH,O
VE (X X) e

So the square of a t,,—; random variable is F1 ,—_j distributed.
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Joint hypothesis versus multiple single hypotheses

To jointly test the k restrictions 8 = o we use the F-statistic
1(8—Bo) (X' X)(B— Bo)
52

(o2

|

This is not the mean of the ¢-statistics for the k£ individual hypotheses that
Br = Br,0. The individual t-statistics are correlated.

Jointly testing hypothesis gives acceptance regions that are ellipsoids. The
union of acceptance regions of multiple individual tests is a hypercube.

Multiple testing problems need size corrections which, in turn, lead to low
power.

The family-wise error rate is

th— k,a/2>:k><0“

Br—Bi,0 Br—Br,0
< P
( {«/~2 XX | k‘“/z})‘z" <\/~2[<X'X> Ton |

To keep the family-wise error rate below o we need to test each of k individual
hypothesis at significance level a/k.
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p-values

If we follow the Neyman-Pearson decision rule we either accept or reject the
null.
We may also look at the p-value of a test statistic.

Consider a test procedure where we reject the null when the statistic v, is
large.

If the statistic v, takes on value 1) in the data the p-value is

sup Pe(¢n>¢)-
0€6,

This is the probability of observing a value of the test statistic greater than
1 if the null holds.

Small p-values suggest the null is likely to be false.

The p-value gives a cut-off of significance levels for which a Neyman-Pearson
decision rule would accept/reject...

But the p-value is informative in its own right and need not lead to a decision
about the null. This is Fisher’s view.
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Inverting test statistics

As an alternative to a point estimator, testing procedures can give rise to
interval estimators.

Suppose we test Hp : 0 = 0p using a decision rule of the form
Accept Hy if ¥, (60) < ¢

for some critical value c.

Then the set A
0={0cO:9Y,(0) <c}

constitutes an interval estimator.

If the original test has size a then
Py, (0o €©)=1—a.

The interval estimator is also called a (1 — «) confidence set.
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Suppose x; ~ N(6,0?).
Consider Ho : 8 = 6y and H; : 6 # 6.
The likelihood ratio decision rule goes in favor of the null if

Tn — Oo

&/vn

< tn—l,a/2~

This means that, for any 6 in the interval

A _ c _ c
0= |:37n - %tn—l,a/Za Tn + %tn—l,a/Z

the null would be accepted.
© is an interval estimator of 6o.

We have
Py, (00 € é)) =1-a

and so © is a (1 — «) confidence interval for 6.
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Now,

and, say,

Hp : 0 =06, Hi :0 > 6.

Under the null,
i (@i — j71)2
o
and we would accept the null if the sample variance

2
~ Xn—1>

satisfies 6 < (n— 1)090)&,17(1

The corresponding interval estimator thus is
|:(Tl - 1) é/XfL*l,Dﬁ +OO)

and has coverage probability 1 — «.

192 / 318



Bayesian credible sets

Given a Bayesian posterior (6|1, ...,z,) and a region R of its support, we
may calculate

P9 € Rlz1,...,zn) = [{0 € R}7(0|z1,...,30)db.

This is a credible probability for the credible set R.
Credible regions can be formed in many ways.

For scalar 6 we could, for example, take the interval [qq /2, ¢1—a/2], Where ¢,
is the 7 quantile of the posterior distribution.
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Return to the example where z; ~ N(6,0?) (with o® known) and we have

prior information  ~ N (u, 72).

Here, the posterior was

N (m,vQ)
for mean and variance
= r Tn + U2/n My v? = 77—2 UQ/” .
T2+ 02/n T2+ 02/n T2+ 02/n
So,
0—m
~ N(0,1
N0, 1)

and a 1 — « credible interval is

[m — za/2v; M — 25/20)].

We can compute the Frequentist coverage probability of this credible set.
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The Frequentist framework has Z,, ~ N (0,02 /n) (here 6 is fixed).

The posterior depends on the data only through its mean,

1 _— 1 6702/n
I A i Lo - '

T2

A calculation shows that
Py (m — Zas2v <0 <m+ za/gv)

equals

q>(ﬁza/2+5 /f> q>( VIF 8 20p +0 /f)

which is different from ®(z4/2) — ®(—2q,2) =1 — a.
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Stratifying regressions

log wages are (approximately) normal.

Suppose different means but common variance for males and females.

. regress lwage male female, noconstant

Source 55 df MS Number of obs = 3,296

F(2, 3294) = 18963.15

Model 8362.48119 2 4181.24086 Prob > F = 0.0000

Residual 1256.29954 3,294 381390268 R-squared = 0.8694

Adj R=squared = 0.8693

Total 9618.78073 3,296 2.9183194 Root MSE = .B1757
lwage Coef. Std. Err. t P>t [95% Conf. Interval
male 1.693011 .0148607 113.93 0.000 1.663874 1.722148
female 1.474751 .B15591 94.59 L'} 1.444182 1.50532
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Common variance is unrealistic and can be relaxed.

(This will lead us to semiparametric problems; considered below.)

regress lwage male female, noconstant r

Linear regression Number of obs = 3,296
F(2, 3294) = 11042.99
Prob = F = 0.0000
R-squared = 0.8694
Root MSE = .61757
Robust
lwage Coef. std. Err. t P>|1| [95% Conf. Interval
male 1.693011 .0145662 116.23 0.000 1.664452 1.721571
female 1.474751 .0159242 92.61 e.e00 1.443529 1.505973
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Add homogenous impact of experience.

gen exper_sg = experkexper

regress lwage male female exper exper_sg, noconstant

Source 55 df M5 Number of obs = 3,296
F(4, 3282) = 5603.67
Model 8386.99808 4 2096.74952 Prob = F = 0.0000
Residual 1231.78265 3,292 .37417456 R-squared = 0.8719
Adj R-squared = 0.8718

Total 9618.78073 3,296 2.9183194 Root MSE = L6117
lwage Coef. Std. Err. t P>t [95% Conf. Interval
male .9908539 .0BBO349 11.26 0.000 .Bl82452 1.163462
female 1777044 .DBT6TEY 8.87 0.000 6057937 .9496151
exper .16438 .0211123 7.79 0.000 .1229855 .2057746
exper_sq -.008899 .0012535 -7.18 0.000 -.0113566 -.0064413
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Stratify impact of experience by gender.

Source 55 df MS MNumber of obs = 3,296
F(6, 3298) = 3742.21
Model 8389.4973 6 1398.24955 Prob = F = B.0008
Residual 1229.28344 3,290 .373642383 R-squared = 8.8722
Adj R-squared = B.8720
Total 9618.78073 3,296 2.9183194 Root MSE = .61126
lwage Coef. Std. Err. t P=|t| [95% Conf. Intervall
male 1.212294 .1227945 9.87 B.000 .9715326 1.453855
Temale .5480934 .1320425 4.15 0.008 .2891996 .BOE9ET2
c.male#c.exper .1158651 .028354 4.09 0.000 .0602719 .1714583
c.male#c.exper_sq -.0064624 .0016021 -4.83 B.000 -.0096036 -.0833211
c.female#c.exper .2195256 .8345253 6.36 0.008 .1518323 .2872189
C.Temale#c.exper_sq -.0119499 .0022043 -5.42 0.000 -.0162719 -.007628
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Test the equality of the regression lines.

. test (male=female) (c.male#c.exper=c.female#c.exper) (c.male#c.exper_sq=c.female#c.exper_sq)
(1) male - female = @
( 2) c.male#c.exper - c.female#c.exper = @
( 3) c.male#c.exper_sq - c.female#c.exper_sq = 0
F( 3, 3290) = 34.95

Prob > F = 0.0000

Test the equality of the intercept and slopes separately.

. test (male=female)
( 1) male - female = @

F( 1, 3298) = 13.57
Prob > F = 0.0002

. test (c.male#c.exper=c.female#c.exper)

( 1) c.male#c.exper - c.female#c.exper =

F( 1, 3298) 5.38
Prob > F = 0.0204

. test (c.male#c.exper_sq=c.female#c.exper_sq)
( 1) c.male#c.exper_sq - c.female#c.exper_sq = @

F( 1, 32998) = 4.06
Prob > F = 0.0441
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SEMIPARAMETRIC PROBLEMS: (GENERALIZED) METHOD OF
MOMENTS
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Asymptotic theory:

Arellano, Appendix A

Hansen II, Chapter 13

Hayashi, Chapter 7

Wooldridge, Chapter 12
Linear instrumental variables:

Hansen II, Chapter 12

Hayashi, Chapter 3

Wooldridge, Chapters 5 and 8
Optimality in conditional moment problems:

Arellano, Appendix B
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Recall,
yi = x50 + €.

Before we had imposed &;|x; ~ N(0,02). but suppose that we only require
that

We no longer assume that y;|z; ~ N(2}0,0?) and so we cannot write down
the likelihood.

For example, var(e;|z;) is unknown and may depend on z;.

All the information we have is contained in conditional moment condition

This is a semiparametric problem:

The model has a parametric part, the conditional mean, and a nonparametric
part, the distribution of &;|z;.
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Iterating expectations shows that
Eo(zi(y: — 230)) =0

and the analogy principle suggest estimating 6 by the solving the empirical
moment

nt sz (y: — z30) = 0.
i=1

This gives the ordinary least-squares estimator,

n -1 n
(n_lzxi x;) <n_1Z:ci yi> )
=1 =1

as unique solution provided ), z;z; has maximal rank.

So, for learning 6 here, normality of the errors (and knowledge thereof) is
not needed.

The errors can be heteroskedastic, skewed, and so on.
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But is ordinary least squares still the best estimator of 67
Aside from
Eo(zi(y; — 20)) =0
we equally have that
Eo((zi @ i) (yi — :0)) =0,
Eo((z: ® 23 @ x:)(yi — x30)) = 0,

Eo((zi @ @ -+ @ 23) (y — xi0)) = 0,

and, indeed, that
Eo(t(xi)(y: — 30)) = 0
for any vector function .

How do we optimally exploit all this information?
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Semiparametric efficiency

In a semiparametric model the distribution of the data is no longer known
up to a small number of parameters.

The model has parametric part (6); and a nonparametric part (say F).

Often (i.e., in these slides), the primary interest lies in the parametric part,
0 and all available information on 6 is formulated in terms of (conditional)
moment conditions.

A general approach to estimation is GMM.
Can be devised to hit the semiparametric efficiency bound.
Intuitively, this bound is
-1
sup / 0,F>
F
that is, the largest of the Cramér-Rao bounds in the parametric submodels

contained in our semiparametric setting.

In the linear regression model from above this would be the Cramér-Rao
bound under the least-favorable distribution for €;|z; that satisfies mean
independence.
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Method of moments

Suppose all we know is that
Eo(p(x:;0)) =0

for some known function ¢.

A unique solution will generally not exist when dim ¢ < dim6. We say 0 is
underidentified.

Suppose, for now, that dim ¢ = dim #. We call this the just-identified case.

A method of moment estimator is a solution to
n

nt Z p(zi;0) = 0.
i=1

The intuition is the analogy principle and similar to the argmax argument.
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Identification

The argmax result requires that

Eo(p(xi;0.)) # 0
for any 6, # 0.

This is global identification.

In contrast, local identification means there is a neighborhood around 6 in
which it is the unique solution.

A sufficient condition for this is that the Jacobian matrix

Ip(zi;0)
Eo ( o0’
is full rank.

When ¢ is linear in 6 local and global identification are the same.
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Limit distribution

Let 0 satisfy
n! Z o(xi;0) = 0.
i=1

We can use a similar argument as used for maximum likelihood to derive its
behavior as n — oo.

Under smoothness conditions an expansion gives

e A e 1= Op(zi; 0 A
SO SUTED SRR L LT
i=1 i=1 i=1 0«
Re-arrangement gives

N o SV

i=1
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Under a dominance condition we have
Ip(zi;0) | » Op(x4;0)
— —FBy | %) = —Ty (say).
Z IR G o (o)
Also, ¢(x;;0) is i.i.d. with zero mean. So we have

% ; pli10) % N(0,9)
provided that the asymptotic variance
Qo = vare(p(z;0)) = Eo(p(xi;0)¢(xi;0)")
exists.

Combined with Slutzky’s theorem we get the following result.

Theorem 22 (Limit distribution of MM estimator)

Under regularity conditions,

as n — 0.
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Our model is
Yi = xQG + €4, Ey (.17151) =0.

Here, ¢(z:;0) = z;(y; — x;0), which gives the least-squares estimator.

Further,
Qp = E(Ef xzx;), Ty = —E(xz:c;)

The asymptotic variance is
E(ziz}) ' E(e} zix}) E(zia) ™"
The variance would simplify if we additionally have that var(e;|z;) = o>

This is an assumption of homoskedasticity.

Then (by iterating expectations)
E(sf Txy) = oad E(x;x}),
so that the asymptotic variance would be
P E(zizl)

211 / 318



We estimate the asymptotic variance as
1 < g 1 & o
nis nis [t
where €, = y; — x;é are the residuals from the least-squares regression.

Under homoskedasticity we can use

(24)(i5)

=1

(could also apply the usual degrees-of-freedom correction to the first term).

Note that least squares is no longer normally distributed for small n because
the errors need no longer be normal.

Consequently, the exact distribution of usual ¢ and F' statistics is unknown.
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Exponential regression

Nonlinear conditional-mean models can be handled in the same way.
For example,

Eo(yila:) = e = p; (say)
implies the moment condition

Eo(xi(yi — ui)) = Bo(wie:) = Eo(xi(yi — €"%)) = 0

(among others) and so the estimator that sets

!
E 25 ( i—el )=0.

This equals the score equation for Poisson (see Slides 122-123).
Sometimes called the pseudo Poisson estimator.

However, the maximum-likelihood standard errors do not apply because the
information equality does not hold here:

Qp = E(mzxief) # E(zlwiul) = —
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Pseudo Poisson : gravity equation

Poisson regression Mumber of obs = 18,360
LR chiz(14) = 2.10e+10

Prob > chi2 = B.00080

Log likelihood = -8.702e+08 Pseudo R2 = 0.9235
trade Coef. Std. Err. z P=|z| [95% Conf. Intervall

Lypex .7324808 .0000147 5.0e+04 g.000 .732452 .7325095

lypim 741078 .0000148 5.0e+04 0.0080 . 7410491 .741107

Lyex 1567117 .0000237 6614.74 0.000 .1566653 .1567581

Lyim .1350185 .0000235 5749.58 B.008 .1349725 .1350645

ldist -.7838006 .0080321 -2.4e+04 0.0e8 =.7838635 =.7837376

border .1929108 .0000616 3130.61 B.00e8 .19279 .1930316
comlang . 745984 .0000672 1.le+0d 8.008 .7458522 . 7461157
colony .B250065 .0000783 319.58 B.088 .0248531 .8251599
landl_ex -.B634737 .0001035 -8346.36 g.000 -.BB36765 -.B632709
landl_im -.6964204 .0000977 -7130.30 0.0080 -.6966119 -.696229
Lremot_ex .65984 .0000BE2 7652.08 0.000 .659671 .6600091
Lremot_im .5615002 .00008E 6529.56 B.008 .5613317 .5616687
comfri_wto .1811872 .bopeE44 2811.04 0.0e8 .1809809 .1812334
open_wto -.1068187 .0000694 -1538.35 B.00e8 -.1069548 -.1066826
_cons -32.3261 .0010727 -3.0e+04 8.008 -32.32821 -32.324
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Robust

trade Coef. Std. Err. z P>|z| [95% Conf. Interval
lypex .7324808 .0267915 27.34 0.000 .6799703 .7849912
lypim .741078 .0274146 27.083 0.000 .6873463 .7948098
lyex .1567117 .8533293 2.94 0.003 .8521882 .2612352

lyim .1350185 .0448872 3.01 0.003 .0470412 .2229957
ldist .7838006 .0546055 =14.35 e.e00 -.B8988255 -.6767757
border .1929108 .1043179 1.85 0.064 -.0115486 .3973702
comlang .745984 .1347222 5.54 0.000 .4819333 1.010035
colony .0250065 .1498038 0.17 B.867 -.2686036 .3186166
landl_ex .B634737 .157181 -5.49 0.000 -1.171543 -.5554047
landl_1im .6964204 .1407874 -4.95 0.000 -.9723586 -.4204823
lremot_ex .65984 .1337805 4.93 b.000 .397635 .9220451
lremot_im .5615002 .1185181 4.74 0.000 .329209 .7937914
comfri_wto .1811072 .0885591 2.05 8.041 .0875344 .3546799
open_wto .1068187 .131239 -0.81 0.416 -.3640425 .15040851
_cons -32.3261 2.859504 -15.78 0.000 -36.36266 -28.28955
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Maximum likelihood

The maximum-likelihood estimator is a method-of-moment estimator.

The moment condition is

Olog fo(xi)\
o ()

and is always just identified.

Here,
Qo =T

holds by the information equality.

When the distribution of the data is misspecified (so the sample is not drawn
from fp) the score equation is biased and maximum likelihood inconsistent,
in general.

This makes semiparametric alternatives attractive.
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Extremum estimators

An Extremum (or M-) estimator is generic terminology for estimators that
maximize an objective function, i.e,

arg max Qn (6),

where Qn(6) = >, q(x:;0) need not be a likelihood function.

(Nonlinear) least-squares, for example, has

n

Qu(0) = =Y (yi — p(xi;0))*,

i=1
where Eg(yi|z:) = ¢(x:;0) (e.g., probit, logit, poisson, etc.).

If @, is differentiable, the extremum estimator is a GMM estimator, with

moment conditions da(zs:0)
q\Tq; _
FEy ( 90 > =0.
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Rank estimator

An example of an M-estimator that is not a GMM estimator is the maximizer
of

Z Zyi {230 > 230} + y; {0 < z;0}.

i=1 i<j
The objective function is a U-process of order two.

The intuition is that, if
E(yi|z:) = G(36)

is monotonic, then
BE(yilz:) > E(y;la;) = 230 > 70
E(yilz:) < E(y;|zy) = 210 < 230
However, this objective function is not differentiable in 6.

In fact, the summands in the objective function are not independent. We
need a different argument to establish the limit behavior of this estimator.
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Quantile regression

Another example of an M-estimator that has a non-smooth objective function
is linear quantile regression.

Take an unconditional setting where z; has continuous (strictly increasing,
for simplicity) distribution F. Let

0 =med(z;) = F71(1/2).

We have
= argmin E(|z; — pl).
P

Indeed,
E(|lzi —pl) = [le — pldF(x) = [* _(p— =) dF(z) + [ [ (z — p) dF (x).
Using Leibniz’s rule,

%ﬁ;pl) = [* dF(z) — [ dF(z) = F(p) — (1 - F(p)) =0

has unique solution p = p.
The sample analog is n~' >°"_ | |z; — p| and is not differentiable.
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An alternative representation of the median follows from

F(Q):Q’

E<{$SQ}—%>:O7

which is a moment condition.

as

This suggest as estimator an (approximate) solution to the empirical moment
nilzn:{mi <p}-—- 1 0.
i=1 a 2

The solution, say 9, has ‘nice’ asymptotic properties,

Q*Q&N( %fl(g)l?)

but showing this requires different machinery than the one discussed here.
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You wish to predict y; based on z;.
The best predictor depends on how you quantify errors, i.e., the loss function.

If p(z;) is the predictor,
E((yi — p(=:))%)
is the expected squared loss.

Under this loss specification the best predictor p minimizes

E((yi — p(2:))*) = E(((y: — E(wilz:)) — (p(2s) — E(yil2:)))?)
(yi — E(yilz:)*) + E((p(z:) — E(yilz:))?)

(yilz:)) + E((p(x:) — E(yila:))?)
(yilz:)).

E
E
E

var

\%

(
(
(var
(
)=

The unique solution is p(z;) = E(y:|xs).

221 / 318



Linear prediction

A linear predictor is a linear function of z;, i.e., z}8 for any vector 3.

The best linear predictor under expected squared loss uses the coefficients
arg min B((y; - 2i5)°).

They solve
B(zi (yi — 278)) = 0.
(uniquely if E(z;x}) has full rank) and equal
B = E(ziz}) " E(ziy:).

This is the population ordinary least-squares coefficient. By very definition,
z; and &; = y; — x;3 are uncorrelated.

Consequently, we can always write
yi = if + &
for some vector 8 such that E(z;e;) = 0.
We call this the linear projection of y; on z; and write it as E*(yi|z;) = z;0.

- S f N2s) =
This does not mean that E(y;|z;) = x;0. 222 ) 318



Endogeneity in a linear model

Again consider
yi = x;0 + ; but now we allow that E(x;e) # 0.

Note that
m B (yilwi) # 230,
® so f is not a regression coefficient;
m E(yilz:) = 230 + E(eilz:) # 230,

H SO
OE(yil:)
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Omitted variables

Say we have
yi = o + z30 + i, E(nilzi, o).

Say an agricultural (log-linearized) Cobb-Douglas production function.

y; is output;

x; are observable inputs ;

m «; is soil quality;

m 7); is rainfall.
Farmer observes (aj,z;). We only observe z;. In general, x;,a; are not
independent.

Estimating
yi = 230 + (s +m:) = 0+ &
via least-squares suffers from endogeneity bias.
The problem is that a; is not observed in data. Otherwise, can just include

it in x;.
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Measurement error

Suppose that
Yi :w;0+ei, E(ei\wi) =0

but (together with y;) we only observe a noisy version of w;, say
T = w; + ni,
for measurement error 7.
Then
Yi =w§9+ei:(a:i—m)/9+ei =20+ (e; — )-xé@—i—si.
Suppose, for simplicity, that E(n;e;) = 0 and E(w;n;) = 0. Then

E(zie;) = E(zi(e; — ni0)) = —E(zin;) 0 = —E(min;) 0 # 0.

A least-squares regression would estimate the population quantity

E(m,m;)flE(xlyl) =0+ E(mlx;)flE(:vzaz) =0 - E(mx;)flE(nmg) 6.
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Simultaneity

Temporary deviation from notational conventions to analyze market model

di = ag — Oap;i + u;
as + s pi + v

Si

where d;, s;, p; are demand, supply, and price, respectively.

Demand and supply curves (model)

B ©  suppl
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2k o o o Co c

@ ©
© % o L&C“’Oe ®

i \0 é’ 03» c:?
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We do not observe supply and demand for any given price.

Collected data is on quantity traded and transaction price, (g;,p:).

Quantity and price (data)
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Data comes from markets in equilibrium.

So, we solve
S; = di

for the equilibrium price to get

704(1—0(5 U; — V4

T 0a+0s  O0g40s

i
This gives traded quantity as

oals +asbg | Osus + 0qv;
04 + 05 04+ 0,

i =

(With E(u;v;) = 0) the population regression slope of ¢; on p; equals

2 2
O’u O-'U
02 + 02

s 5 Vd,

02 + 02
for 02 = E(u?) and o2 = E(v}).

Least-squares estimates a weighted average of supply and demand elasticities.
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price

229 / 318



To see the problem in terms of endogeneity, focus on the estimation of the

demand curve.
Then, collecting equations from above,

Qg — Qs Ui — V4

di = aqg — O0api + us, Di

Clearly,

2
U; — Vg (o)
E iU ) = E i = 0,
(pius) (“ <9d+9s)) P
as the errors in both equations are correlated.

The same happens for the supply curve, as

Qg — Qs Ui — Vg

T 04405 " Oat0s

S; = as + O0spi + 4, Di

and

2
U; — Vj _ Oy
Epiwi) ‘E<”" (0d+0s)> R

T 0a+0,  0at0s
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Linear instrumental-variable problem

Now suppose we have

yi = x,0 + &, E(zig;) =0
for instrumental variables z; (with dim z; = dim ;).
This gives us the moment conditions

Eo(zi (yi — x70)) = 0.

An instrument is

= valid if E(z;e;) = 0; and

= relevant if F(z;x}) is full rank.

We then obtain the instrumental-variable estimator
1 & T
g | = s — L
(15) (1)
1= 1=
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It is useful to proceed in matrix notation:
y=X0+e¢

and we set to zero the sample covariance of the errors and instruments. The
solution is
0=(2'X)""(Z'y).

Note that this gives least squares when regressors instrument for themselves.

We need at least as many instruments as we have covariates.

To motivate the sequel suppose dim z; > dimz;. Then the dim z; equations
Z'(y—X0)=0

involve dimz; < dim z; unknowns. Then (generically) these equations do
not have a solution (for finite n).

The method-of-moment idea fails to provide us with an estimator when we
have overidentification.
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Resolving simultaneity with instrumental variables

Return to the estimation of a demand curve but now suppose that

di = og — O0api + us
8i = s +0sp; + T2 +v;

where E(zu;) = 0.
z; shifts supply (relevance) but not demand (exclusion).
We now have the triangular system of equations

di = aq — bapi + i
'_ad—as_ ™ Z'+Ui_’ui.
P 0. T 0.+ 0.7 B+,

Further, by relevance and exclusion,
cov(di, z;) = cov(ag — 0api + us, zi) = —04 cov(ps, zi),
and so
COV(di7 Zl)
cov(pi, zi)
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Measurement error

Suppose again that
yi = wil + €,

but that w; is measured with error, say as x; = w; + 1;. Then
yi = xif + (€; — 1:0)
and a regression of y; on x; does not deliver a consistent estimator of 6.
Suppose that we have an additional noisy measurement of w;,
2i = w; + ;.
If E(¢;n:) = 0 and E(Cie;) = 0 we can estimate 6 by instrumental variables.
We have
E(zimi) = E((wi + G) (wi +m:)) = 0w, E(zi(ei —mif)) = 0,

S0 z; is relevant and valid.
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Generalized method of moments

In overidentified problems (where we have more equations than unknowns)
we cannot satisfy all empirical moment conditions,

9(0) =n"" Zw(mi;e) =0,

exactly.

The solution is to minimize the quadratic form
9(0) A3(0).
for some (positive semi-definite) weight matrix A.

This is the generalized method of moments

Intuitively, we minimize the distance ||g(¢) — 0]|a.
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Reduction in moments

With

A og(0 1= Op(x: 0
GOy = B0 — oy 22i0),

the first-order condition to the GMM problem is

G(0) Ag(0) = 0.
This is a set of dim 6 linear combinations of the dim ¢ original moments.
Linear combination is determined by weight matrix A (which we may choose).
So different A give different estimators.
The optimal weight matrix turns out to be

A=0,!

(or a consistent estimator thereof).
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Limit distribution

Combine the convergence result G(6.) - I'y for any consistent 6, with the

expansion
B n R B n B n 8 ”» 0 R
ntY el@if) =0Tt Y e(wi6) +n IZL(@Z&, )‘ CR)
i=1 i=1 i=1 0
to see that

j_ _ —1 l . —1/2
(0—0)=—(TpATy) F(,Anzi:ga(ml,e)—l—op(n ).

Then, with % Z o(x4;0) R N(0,99),

we get the result.

Theorem 23 (Limit distribution of GMM estimator)

Under regularity conditions,

Vil —0) % N(0,(T5ATe) H(TyAQA'Te) (T ATy) 1)

as n — oQ.
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Optimal weighting

Theorem 24 (Semiparametric efficiency)

The efficiency bound (for a given set of moment conditions) is

(TpQ, 'To) .

We can establish this by showing that the difference
(ThATy) " (THAQeA'To)(ThATe) " — (THQ 'Tg) "

is a positive semi-definite matrix.

The bound is achieved if
A=0;"

(up to a scale) or if we use a consistent estimator.

Note that in this case we have a generalized information equality.
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Let
C = (ThATy) 'THAQ)?, D =,;"’T,.

Then
(TyATe) (THAQeA'To) (T ATe) " — (THQ, 'T) "
can be written as
cc’' —CcD(D'D)"'D'C’.
But this is
CMpC' >0, Mp = I, — D(D'D)"'D'".

The inequality follows because Mp is an orthogonal projection matrix, and
so all its eigenvalues are zero or one. Hence, it is positive semi-definite.

To see that the eigenvalues of an orthogonal projector P are all zero or one,
let A # 0 be an eigenvalue of P. Then Px = Az for some z # 0. Because P
is idempotent we must also have that P2z = Pz = APz = \2z. Therefore it
must hold that

A\x = /\237,

which can only be true if A € {0, 1}. O
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x? problem

To illustrate the efficiency gain of combining moments suppose that z; ~ x32.

‘We know that
Eg (wz — 9) =0

so we could estimate 6 by the sample mean.

But varg(z;) = 20 so also have the moment condition Fp((x; —0)% —26) = 0.

Let

p(zi;0) = ( (z: fia;za_ 20 > ’

Qo = Eo(p(2i;0) p(xi;0)') = 20 < }1 6(0i 4) )

Then
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So,
3(0+4
oo | (%_11)_
6(36 +4) -1 i

The Jacobian of the moment conditions is simply —(1,2)" and so we find that
the asymptotic variance equals

0+4/3

20 .
0+2

If we would just use one of the moments the asymptotic variance would be
20, and 36(6+4),

respectively. Both are larger.

Note that €2¢ depends on 6. So the optimal GMM estimator will generally
be a two-step estimator (see below).

Estimation of the weight matrix introduces additional sampling noise that

leads to bias and affects the coverage of confidence intervals/size and power
of tests.
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When z; is Poisson we similarly have
Eo(zi—0)=0,  Eo((zi—0)>—0)=0

by the mean/variance equality.

(1 1 a1 (1+20 -1
Q"_‘9<1 1+2a)’ 2 _292< -1 1 >

But as Ty = —(1,1) we get

Here,

_ 1
0, Ty = =.
RLT’) 7 0

So the asymptotic variance is the same as for the simple estimator T,, based
on the first moment condition only.

We knew we should have reached this conclusion here because T, is the
maximum-likelihood estimator and is best unbiased.
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Two-step GMM

We can estimate Qg = Eg(pp(x:;0) p(2:;0)") by
Z (p 331, -Tu 9) )

where we use a first-step GMM estimator 0 (constructed using a feasible A).

We then re-estimate 6 by

0 = arg m@in g(e)’fzglg(e).
In principle, this two-step procedure can be iterated.

Could also consider continuously-updated GMM:
AV A—1 A A L
arg memg(e) Qy §(0), Qo = th(l’u o(zi;0).

This is computationally more challenging; first-order condition features extra
terms (use MCMC).
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Examples of (nonlinear) method of moments

Avery, R. B., L. P. Hansen, and V. J. Hotz (1983). Multiperiod probit models and orthogonality
condition estimation. International Economic Review 24, 21-35.

Becker, G. S., M. Grossman, and K. M. Murphy (1994). An empirical analysis of cigarette
addiction. American Economic Review 84, 396—418.

Berry, S. T. (1994). Estimating discrete-choice models of product differentiation. RAND Journal
of Economics 25, 242—-262.

Goldberg, P. K. and F. Verboven (2001). The evolution of price dispersion in the European car
market. Review of Economic Studies 68, 811-848.

Hansen, L. P. and K. J. Singleton (1982). Generalized instrumental variables estimation of
nonlinear rational expectations models. Econometrica 50, 1269-1286.

Pakes, A. (1986). Patents as options: Some estimates of the value of holding European patent
stocks. Econometrica 54, 755-784.
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Two-stage least squares

In the linear instrumental-variable problem (with more instruments than
covariates) we minimize

(y—X0)ZAZ (y— X0).
The first-order condition is (X'Z)A Z'(y — X 60) = 0 and the solution is thus
0= (X'ZAZ'X) N (X'ZAZ'y).
Under homoskedasticity,
Qo = E(el2:2)) = 02 E(zi2})
so that the optimal weight matrix is simply 62 (Z'Z) "
The efficient estimator is a one-step estimator and takes the form
0=(X'2(2'2)"'Z2'X)"(X'2(Z2'2)Z'y) = (X'PzX) " (X'Pzy).

This is the two-stage least squares estimator.
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To understand 2SLS recall the model
yi = 150 + €5, E(zie;) =0

and note that we can always use E*(z;|2;) = 27 to decompose the covariates
as

xp = 2z;m+ 1 = F; + 1 (say).
By the validity of z; as instrument we have E(z;¢;) = 0 and so we know that

E(zig;) = E(Zici) + E(nie:) = E(nici),
i.e., n; is the endogenous part of x;. Also, by virtue of the linear projection,
E(zin:;) = 0 and so
It follows that, in
yi = x50 +e; = T30 + (e, +1i0) = T:0 + € (say).
the covariates Z; and error ¢; are uncorrelated.

In practice, #; is unknown. Replacing it with an estimator gives 2SLS:

Estimate Z; by &;, the fitted values from a linear regression of x; on z;;

Estimate 6 by regressing y; on ;.
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Replacing population projection with sample projection introduces bias.

We have
7#=(2'2)"'Z' X =n+(2'2)"'Z'n

and so X B
X=X+ Pzn.

The second term correlates with € and so
E(&ie:) #0,

which introduces bias.

Which vanishes as n — oo, yielding consistency.
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regress ed76 exp76 exp762 nearcd

Source 55 df M5 Number of obs 3,010
F{3, 3006) 778.43

Model 9427.23552 3 3142.41184 Prob > F 0.0000
Residual 12134.8445 3,006 4.03687443 R=squared 0.4372
Adj R-squared 0.4367

Total 21562.0801 3,009 7.16586243 Root MSE 2.0092
ed76 Coef. Std. Err. t P=|t| [95% Conf. Intervall]
exp76 -.4225143 .834817 -12.14 0.8008 -.4907818 -.3542468
exp762 .000235 .00l7044 8.14 0.890 -.0031069 .8035769
nearcd .6082325 .0788038 7.62 0.000 .4457177 .7547472
_cons 16.57345 .1781704 97.39 0.8008 16.23978 16.98711
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predict ed76_hat
(option xb assumed; fitted

regress lwage76 ed76_hat

values})

exp76 exp762

Source 55 df MS Number of obs = 3,010
F(3, 3008} = 42.94

Model 24.3527183 3 B8.11757276 Frob = F = e.oe00
Residual 568.288928 3,006 .189851539 R-squared = 8.0411
Adj R-squared = 2.0401

Total 592.641646 3,009 .196956346 Root MSE = .4348
lwage76 Coef. Std. Err. t P=|t] [95% Conf. Interval]
ed76_hat .2587155 .0284116 9.11 e.eee0 .2030075 .3144236
exp76 .1596791 .8141659 11.27 e.oee0 .1319833 .1874549
expi62 -.0024875 .0003688 -6.75 e.o000 -.00832106 -.0017644
_cons 1.653985 .4842957 3.42 e.eel .7044003 2.603569
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Precision of instrumental variables

Instrumental-variable estimators are always more variable than least squares.

Suppose we only have one covariate x;, one instrument z;, and homoskedastic
errors.

The usual first-order approximation to the least-squares estimator is
2
-0~ N (o,m“’-;)
a(t
(under exogeneity).

The same first-order approximation to the instrumental-variable estimator is

-1 _2
~ a n-- oz
0—0NN<0,ZU—%),

where p,. is the correlation between z; and z;.
The intuition is that x; is (in terms of relevance/fit) its own best instrument.
The instrument is said to be weak when p;. is small.

In this case the first-order approximation becomes poor.
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Weak instruments

Take the simple univariate problem, where we only have one covariate x; and
m instruments z; (treat these as fixed), and suppose we have homoskedastic
errors.

We can approximate the mean squared error of 2SLS to second order to get
102/02 m\2/po:\2 _
Loc/oy () () 1o,
n_ T n T

VARIANCE SQUARED BIAS

where .,
nwZ'Zr R
o; 1-®

is the concentration parameter.
R is the (uncentered) population R? of the first-stage regression.
This relates directly to the first-stage F-statistic.

When 7 is small most of the variation on x; comes from 7;, and not from z;.
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Sampling distribution of two-stage least squares as a function of the value of
the concentration parameter (simulation details omitted).
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Many instruments

Note also how

2 2 2 2
105/0-77 + (T pPOe +0(1’L72)

n T n T
VARIANCE SQUARED BIAS

depends on the number of instruments (m).
More instruments decrease the relative contribution of 7; to z;.
But the fitted values ; = z;7 have to be estimated.

Under regularity conditions,

Ti — i = Op(v/m/n)

The noise in the fitted values grows with m.
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Sampling distribution of two-stage least squares as a function of the number

of instruments (simulation details omitted).
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Control-function interpretation

Let
e = MzX

be the residuals from the least-squares regression of X on Z (i.e., from the
first stage).

Then 2SLS can be written as

0= (X'PzX) " (X'Pzy) = (X' M.X) (X' M.y).

Indeed,

McX =Mo(PzX +MzX)=(I-P.)PzX + Mce=PzX.

So 2SLS can equally be performed in the following two steps:
= Estimate n; by e;, the residuals from a linear regression of x; on z;;

u Estimate 6 by regressing y; on z; and e;.
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This view on 2SLS gives us a way to test the null of exogeneity.
Work through the simple model with

yi =i + &

Ti = 2T+ N
where the errors are jointly normal.
Let e; be the residual from the first stage.
Then 2SLS solves the empirical moments

oy
Z( e% )(yi—xie—em) =0.

for 6,~.

As e; = ¢y — z;® = m; — z:(F — 7) we can write this as (evaluating at true
parameter values)

S (5 ) (5 )rene(Ltn ot (1) 6

i
for u; = y; — x:0 — iy = &5 — My (which does not correlate with x; or ;).
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Because F(zn;) = 0 and F(z;¢;) = 0, and because |7 — 7||> = Op(n™1'), this
behaves like (as n — oo and scaled by n™')

R0 ) 2T )

were we have used that # — 7 =n"" 3" | 2zin:i/E(27) + 0p(n~"/?) The first
term is standard, it also showed up when 7; was directly observed. The
second term is present because we have replaced 7; by an estimator e;; this
introduces additional noise that has to be accounted for.

The variance-covariance matrix of the above random variable is

2 2 2 2 2 2 2 2

O 030, Ty T°0,0, 0,04
6 = 2

0n0u 070%

2 2 2 2 2 2
2 Oz On ) ( v (0% — Un)Un 0 )
o + .
“ ( 0% 072] 0 0

The limit of the Jacobian of the moment conditions is

2 2 2 2

r, — ( oy Oy ) r-t_ 1 o, —o,
- 2 2 I 6 — o 2 2 _ 2 2 .

077 U”I an(gz - Un) U”I Oz

N
»
N
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The asymptotic variance of the estimator,
L, el ",
then equals )
Uifgl +72703?70% ( _1 _i ) .

Under the null of exogeneity (v = 0), this is just UZFg_l and so the usual
least-squares standard error will be consistent.

Hence, the reported t-statistic is valid for testing exogeneity.

For our estimator of # we do need a correction to the usual least-squares
standard error as we want to allow that vy # 0.
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ivregress 2sls lwage76 (ed76 = nearcd4) exp76 exp762

Instrumental variables {25LS) regression Number of obs = 3,818

Wald chi2(3) = 89.88

Prob > chi2 = e.oe00

R-squared = .

Root MSE = .52853

1wage76 Coef. Std. Err. z P>|z| [95% Conf. Intervall

ed76 .2587156 .8340135 7.61 e.oee0 .1928503 .3253808

exp76 .1596791 .016959 9.42 e.o000 .1264401 .1929181

expib2 -.0024875 .0004415 -5.63 e.eee0 -.0833528 -.0016222

_cons 1.653985 .579785 2.85 e.oed .5176268 2.790342
Instrumented: ed76

Instruments:

exp76 exp762 nearcd
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regress ed76 exp76 exp762 nearcd
Source 55 df M5 Mumber of obs 3,010
F(3, 3006) 778.43
Model 9427.23552 3 3142.41184 Prob = F @.0000
Residual 12134.8445 3,086 4.83687443 R-squared 0.4372
Adj R-squared 8.4367
Total 21562.0801 3,009 7.16586243 Root MSE 2.0092
ed76 Coef. Std. Err. t P>|t]| [95% Conf. Interval
exp76b -.4225143 .034817 -12.14 0.000 -.4907818 -.3542468
exp762 .000235 .0017044 0.14 @.890 -.0031069 .0035769
nearcd .6802325 .0788038 7.62 @6.000 .4457177 .7547472
_cons 16.57345 .178l17e4 97.39 0.000 16.23978 16.90711

predict u, residual
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regress lwage76 ed76 u exp76 exp762

Source 55 df M5 Mumber of obs 3,010
F(4, 3005) 195.93

Model 122.591904 4 30.6479761 Prob = F @.0000
Residual 470.049742 3,085 .156422543 R-squared 0.2069
Adj R-squared 8.2058

Total 592.641646 3,009 .196956346 Root MSE .3955
lwage76 Coef. Std. Err. t P>|t]| [95% Conf. Intervall
ed76 .2587156 .0258437 10.01 0.000 .2080424 .3093887

u -.1687399 .0260919 -6.47 @.000 -.2198996 -.1175801
exp7h .1596791 .0128855 12.39 @6.000 .1344137 .1849445
exp762 -.00824875 .0083355 -7.42 0.000 -.0031453 -.0018298
_cons 1.653984 .4485246 3.75 @.000 .7982243 2.517745
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Bias correction with many moments

For a fixed weight matrix A, the bias in the GMM objective function is
Eo(§(0)' Ag(0)) = tr(AQp)/n.

The bias shrinks with n but grows (typically linearly) with dim ¢.

A bias-corrected GMM estimator minimizes

_ i 2 (@i 0) Ap(a;3 6) .

9(6) Ag(8) — tr(AQp) /n 2

The continuously-updated estimator from above has a similar bias-correction
interpretation.

For 2SLS we have A = (Z’Z)™" and so the bias-corrected objective function

equals
30 2z (Wi — wi0) pij (y; — @50)
n2

for pij = (Pz)ij = 2(Z'Z) ™" 2.
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Its minimizer is the jackknife instrumental-variable estimator
—1 1
i G i i i i

where

ii = ijpji = erz;(Z'Z)flzi = H,izi.

J#i JF#i
Recall that the first-stage equation is of the form
z; =z +ni.

Here, lzLi is a leave-one-out estimator of the first-stage coefficient matrix
and &; is the associated fitted value.

Recall that bias in (feasible) 2SLS arose from the fact that IT is a function of
n; and n; correlates with &; (See Slide 248). By construction the leave-one-out
fitted values do not depend on 7;.
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Multiplicative models with endogeneity

As an example of nonlinear instrumental-variable estimation, suppose that

yi = p(@i;0) i, Eleilz) = 1.
We have (conditional) moment condition

Yi
Eo| ————1|z;) =0
9(90(171';9) )

and so many unconditional moment conditions; for example

An example is an exponential model.
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Additional reading on instrumental variables

Bekker, P. A. (1994). Alternative approximations to the distributions of instrumental variable
estimators. FEconometrica 62, 657-681.

Bound, J. , D. A. Jaeger, and R. M. Baker (1995). Problems with instrumental variables esti-
mation when the correlation between the instruments and the endogeneous explanatory variable
is weak. Journal of the American Statistical Association 90, 443-450.

Staiger, D. and J. H. Stock (1997). Instrumental variabels regression with weak instruments.
Econometrica 65, 557—586.

Stock, J. H. and M. Yogo (2005). Testing for weak instruments in linear IV regression. In

Andrews, D. W. K. and J. H. Stock (Editors), Identification and Inference for Econometric Models:
Essays in Honor of Thomas Rothenberg, Chapter 5, 80—108 (Cambridge UP, Cambridge, UK).
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Likelihood-ratio type test statistic

Now consider testing the m-dimensional constraint that r(6) = 0.
Let

b4 _ . ~ /AflA .
0= arggzgg)n:()gw) Q2574(0);

the efficient GMM estimator under the constraint.

Theorem 25 (Limit distribution of LR-type statistic)

Under the null,
as n — oo.

This result requires optimal weighting.

Note that we use the same weight matrix throughout.
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Score type test statistic

Similarly, we can look whether the first-order condition of the unconstrained

problem, A .
G(0)'Q;'9(0) =0,

when evaluated in the constrained estimator 6, is far from zero.

Theorem 26 (Limit distribution of LM-type statistic)

Under the null,

as n — Q.

This result requires optimal weighting.
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Wald test statistic

The Wald statistic works without reference to the constrained problem.

Under optimal weighting we would have the following, where R is again the
Jacobian matrix of the constraint vector r.

Theorem 27 (Limit distribution of the Wald statistic)
Under the null,

nr(8) (R(GBY Q5 G6) ' R)r(8) 5 X2,

as n — oo.
More generally, when using estimator 6 computed using weight matrix A it

equals

nr(0) (R(G(6) AG(9)) ™1 (G(9) AQ A'G(0))(G(9) AG(6)) ™) " R)™'r(8).
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J-statistic

Note that L .
ng(o)/leg(e) — Xc2hm ¢—dim 6
if all moments hold.

So we can test the specification.

Only possible when we have overidentification, i.e., when
dim¢ — dim6 >0

(Otherwise the test statistic is exactly zero).

If the J-statistic is large relative to the quantiles of the y*-distribution at
least some of the moment conditions are likely to be invalid.

This does not tell us which moments are troublesome.
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We can test subset of the moments as well.

Partition the moments using ¢ (z;0) = (p1(z;0)’, p2(x;0))’.

Also partition R X
O, — ( (Q)11 ()12 )
0= N N .
()21 ()22
Want to test
Ey(p2(zi;0)) =0

assuming that Eg(p1(x4;0)) = 0.
If dim ¢; > dim 6 we can compute
6 = argmin 41 (0)'(29)11'1(6),
where §1(0) = n~ ">, p1(zi;0).
We can also compute the estimator using all moment conditions, i.e., the

usual R
A PPN 1A—1~
0 = arg melng(e) Qé g(0).
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We then have the following simple result.

Theorem 28 (Testing moment validity)

If all moment conditions hold,
N A A N A N ¥ A _ ~ ¥ d
ng(@)’Qé 19(9) —ngi (Q)I(Qé)ulgl (0) = Xﬁimw—dimwl
as n — oo.

Note that we use the same weight matrix in both terms.

This ensures (in small samples) that the test statistic is non-negative.
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Testing instrument validity

In the linear model
y=X0+e

with homoskedastic errors, the optimally-weighted GMM estimator is 2SLS
and the objective function (scaled up by n and evaluated at its minimizer)
equals

g'Pzé

6-2

9

where & are the 2SLS residuals.

This statistic is known as Sargan’s statistic.

Note that Pz¢& are the fitted values of a regression of the 2SLS residuals on

the instruments

Al A

Moreover, as 6% = &'&/n we can equivalently write

T A
&'Pze :nESS — R

" TSS

Invalid instruments can be detected by looking at correlation between the
residuals and the instruments.
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Optimal moment conditions in conditional models

Now suppose that we know
Eo(p(zi;0)]z:) =0
(a.s.)

This yields an infinite amount of unconditional moments.

We look for the optimal moment conditions, i.e., the function 1 in
Eo(¢(zi) p(24;0)) = 0

for which the asymptotic variance of the resulting GMM estimator is minimal.

The optimal instrument turns out to be

W(z) = —Ep (M

207 zi> Ey (gp(aci;e) <p(a:u49)'| zi)71 = —To(z) Qg(zi)_l.

Note that dimy = dim 6.
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Notice that, now,
Qo = varg(¢(2z:) @(2:;0)) = Eo (To(2:) Qo(z:) "' To(2:)) ,

and

To = B (w(e) 22050 ) — By (o(a) O0() " Tof)

(use iterated expectations) such that

Qy = —T'y.

Hence, the generic sandwich-form asymptotic variance becomes
avarg(0) = (T, 'To) ™ F = Qp Y

that is,
v —0) % N(0,9;1).

This is the semiparametric efficiency bound.
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Let
gi = P(2:) (43 0), hi =T Ad(2:) p(xi; 6)
for arbitrary alternative weight matrix A and instrument vector ¢.

The asymptotic variances of the associated GMM estimators are
Eo(9ig:)~"s  Eo(higi)” ' Eo(hihi)Ee(g:hi)~",
respectively.
Rewriting gives
Eo(higi) ™" Eo(hihi) Eo(gihi) ™" —Eo(gigi) ™" = Eo(higi) ™" Eo(vivi)Ee(gihi) "

for
vi = hi — gi7, v = Eg(gi9i) ' Eo(gihs).

This difference is positive semi-definite because E(v;v;) > 0. O
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With
yi = xi0 + €3, Eg(gilzi) =0
we have
Ee(yi — .’L‘;Q | 2171) =0.
Here,

Oy — x40 ,
To(xi) = Eg (%‘ wz) = —x;, Qg (x:) = EG(E? | @) = af (say).

So,
P(2:) = —To(2:) Qo(w:) " = %

and the optimal estimator solves the empirical moment condition

_12% l—me _o.

Observation i gets less weight if o2 is higher. This is weighted least squares.
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If we write
V = diag(o},...,00).

Then the optimal estimator is

6=(X'V'X) X'V ly)

Under homoskedasticity, i.e., when o7 = o2 for all ¢ this reduces to the simple
0= (X'X)""(X'y),
which is ordinary least squares.

This is the Gauss-Markov theorem.
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Exponential model

‘We have ,
Yi = 6ziBEi, E9(61‘|:1,‘i) =1,
and so
Eo(y; — ezle|a:i) =0.
Here,

To(wi) = —"Cal,  Qo(m:) = 0? (say).

The optimal empirical moment condition thus is
n z'0 z'0
1 ze%’ (y; — e”%)
n — 2 =0
2o
With Poisson data, for example, o7 = ¢®i? and the estimating equation is

_12 x4 ( i—el ) =0.

’
With homoskedastic errors o7 = o2 (¢*1?)? and we solve

9

_1 £E1 1,—61
E =0.
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Instrumental-variable model

Now if
Eg(yi — 93;9| Zz) =0

we obtain

Lo(2:) = —E(xi] z1), Qo(2:) = E(el|z:) = o7 (say).

So, we solve

ol Z E(xi| z) — z30) _o.

Here, the reduced form is nonlinear, in general.

This is also true under homoskedasticity. So two-stage least squares is not
optimal, in general.

Two-stage least squares approximates FE(z;|z;) by the linear projection
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Linear model for panel data

Suppose now that we have repeated measurements, as in
Yit = Tl + e,  t=1,...,T.
For each i we have a set of T equations.
This fits our framework on stacking observations for each i and writing
yi = zi0 + €55
here, e.g., vi = (yi1, ..., yir)’ -
Suppose that

€it = O + Ust.

We may have that «; and z; are correlated. Then E(e;|z;) # 0.

However, with A the first-differencing operator, we have the T'— 1 equations
Ayir = A:c;té? + Agjy = Aacgte + Auge

that are free of «;.

A sufficient condition for estimation is E(uit|zi, ;) = 0.
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Define the (T'— 1) x T first-differencing matrix D as

-1 1 0 0 0

0o -1 1 0 0
D=

0 0 0 -1 1

‘We have the conditional moment conditions

EQ[D(’yi — $;9)|Ii1, e ,.’EiT} =0.

The first-differenced least-squares estimator solves
Z x; D’ D(y; — xé@) =0.
=1

This is pooled least-squares on first-differenced data. It is inefficient as the
Awu;; are correlated.
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Suppose that u; ~ (0,0 It). Then Du; ~ (0,02 DD').

The optimal unconditional (empirical) moments are
> @ D' (DD')'D (ys — i) = 0.
i=1

This yields a generalized least-squares estimator. It is a pooled least-squares
estimator on demeaned data.

A calculation gives

/
2%l

M =D (DD 'D=1Ir — T

where 7 is a vector of ones.

The matrix M transforms data into deviations from within-group means. For
example, My; = y; — Y.
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Feedback

The above estimator requires that u,: is uncorrelated with x;1,...,x;7. This
rules out dynamics and, more generally, feedback.

A simple model where the problem arises is the (first-order) autoregression
Yit = Yit—10 + o + Uit
where the initial value y;o is taken as observed.
First-differencing (and, equivalently, demeaning) sweeps out «;,
Ayt = Ayir—10 + Augg,
but (taking u; to be homoskedastic and serially uncorrelated for simplicity)
E(Ayi—1 Aui) = E(Aui—y Auy) = —E(ui_y) = —0° #0,

and so introduces a new endogeneity problem.
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An assumption of sequential exogeneity, i.e., E(uit|yio,- -, Yit—1, )
enough to obtain a GMM estimator.

It implies (sequential) conditional moments

Eo(Ayit — Ayie—10| yio, - . ., yit—2) = 0.

The conventional GMM estimator uses the linear moment conditions
Yit—2

Yit—3
E : (Ayzt — Ayit,ﬂ) =0

Yio
(forallt =2,...,7).

=0is
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DEALING WITH (WEAK) DEPENDENCE
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Hansen II, Chapters 14 and 15
Hayashi, Chapter 6

287 / 318



Stationary

Random sampling may be too strong a requirement:

m Time series data;
m Interactions and other network data;

m Snowball sampling (and so on).

Consider a scalar sequence {z;}.

{z:} is (strictly) stationary if, for any h > 0, the distribution of (x;, ..., Zi+s)
does not depend on 1.

An implication (if the moments exist) is weak stationarity: the mean E(x;)
and covariance E(z;x;yn) — E(z;)E(zi+n) do not depend on i.

The techniques discussed so far can be adapted to stationary data provided
they are weakly dependent.
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Dependence and mixing

Weak dependence is a requirement that the overall behavior of {z;} is not
driven by the realizations of the initial random variables (or any of the other
variables later on).

Blocks of data (zi, . .., @itj) and (Tiyjth, - - -, Titj+htk) separated by h units
become independent as h grows.

One way to formalize weak dependence is through mixing.

For h > 1 define the mixing coefficients

ap= sup |P(ANB)— P(A)P(B),
A€A,BEB

where (somewhat crudely stated) the sets A and B cover all events involving
TooyeresTim1,Xi and Tith, Titht1,---,T4oo, respectively. Note how these
sets depend on h.

The process {x;} is strongly mixing (or alpha mixing) if an — 0 as h — oo.
Note that independent data has ap = 0 for any h.
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Consistency of the sample mean

Now let n
Tpn=n " Z T;
i=1
be the sample mean.

Theorem 29 (Law of large numbers)

Suppose that {x;} is stationary and mizing, and that p = E(x;) exists.
Then
Tn —>

as n — oo.
This is a substantial generalization of our earlier law of large numbers for
random samples.

Note that this also implies that the continuous-mapping theorem generalizes
in the same way.
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Central limit theorem

Theorem 30 (Central limit theorem)

Suppose that {x;} is stationary and mizing with mizing coefficient satisfying

o0
Z ai/(QH) < 400,

h=1

that E(z;) = p ezists and that E(||z:||**°) for some § > 0. Then

VRET2 (@ — p) S N(O, 1)

for
n—1 = h oo “+oo

2= tim, (3045 222 ) =S = 5 si<oo
h=1 h=1 h=—oc0

where X, = E((z; — p)(@itn — p)’).

Many special cases of this theorem are available with (complicated) low-level
conditions for specific processes.
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The summability of the covariances (i.e., the fact that ¥ is finite) follows
from the restriction on the mixing coefficients. A sufficient condition for
summability is that X, — 0 faster than 1/h — 0.

The variance formula follows from (again for the scalar case)

ar <le> B ZZCOV(Z’i,EE’j)

i=1 j=1
n i—1 n—1i
= Z (cov(mi,mi) + Z cov(zi, xi—n) + Z cov(zy, x¢+h)>
i=1 h=1 h=1
DRSS Y
=nSo+(n—1)(E1+X9)+ 4+ (Bn-1 +E_(n-1))

=n (20 +n§_: ("n;h)(zh +2h)> .

We have ¥_), = X},
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A (truncated) estimator of the long-run variance 3 can be constructed as

Kr—1
S B (s 4 1)

for chosen integer k < n and

— /
:nfhg Ti — ZTn)(Tith — Tn) -

The resulting estimator is typically referred to as a HAC estimator.

The truncation at k lags is needed because $3, becomes increasingly noisy as
a function of h (for given n). (Consistency requires that x — oo with n, but
not too fast.)

3 is also called the Newey-West, variance estimator. It can be interpreted
as a ‘kernel” estimator with a triangular kernel. Importantly, an unlike most
other such ‘kernel’ estimators, it is ensured to be positive semi-definite.
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Autoregression

Suppose that
ri=a+pxri-1+ e, g; ~iid. N(O,a2).
We impose that |p| < 1.
We have E(z;) = o+ p E(zi—1) and so
uw=E(z;) = %p'
Also, var(z;) = p® var(z;—1) + o and, hence,

2
g

o= —.
0 -2

The univariate stationary distribution, therefore, is z; ~ N(u,¥o). The
covariances are proportional to Yo:

Eh = ph Zo;
for example,

Y= COV(.’Ei,.’Ei_l) = COV(Oé +pxi-1+ ei,mi_l) = pCOV(l‘i_h:I)i_l) = pZO.
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%5, = p* o shrinks at a geometric rate. The long-run variance is well-defined
and equals

= 1
N=%o+23 '8 = L,
h=1 l—p

Here, the particularly simple structure of ¥ suggests the simple alternative
HAC estimator

145~
+’izo
1-p
where N )
~ o Xi—1(Ti — Tn - o
p:Zz—i 1( —_ 2), EO: ~2
> i (Ti — Tn) 1-p
and

6% = S (e —Tn) — p(Ti1 — Tn))2
n—1 .

When p =0 {z;} is i.i.d. and ¥ = X¢ but, for example, when p = .5 {z;} is
dependent and ¥ = 3X.

Ignoring the non-zero covariances can lead to large underestimation of the
actual variability of the series.
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Moving average

Another example has
i =p+e + PBei-1, g; ~ii.d. N(O,az).
Here, E(z;) = p is immediate. Further,
Yo = (1+B2)<f2 and Y1 :,362.

However,
Yr =0, |h| > 1,

so the dependence in short-lived and vanishes abruptly beyond the first-order
autocovariance.

It follows that
Y=Y+ 1+ =(1+8)°%"

A combination of both examples gives
Ti=a+pri—1+e + Pei-, g; ~iid. N(0,0%).

Extensions to higher-order are immediate. This gives a parsimonious way to
modelling dependence.
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Limit distribution of GMM

In practice the above is important for getting correct standard errors with
serially dependent data.

The two-step GMM estimator solves
. ~ ITA—1 A~
mgmg(@) Q;9(0).

where, now, Qé is a HAC estimator of the long-run covariance matrix of the
moment condition

9(0)=n"" Z o(ai;0).

The same robust estimator needs to be used when constructing test statistics.

The remainder of the argument for GMM carries over without modification.
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Linear model with correlated errors

Consider
yi = x,0 + &

with E(g;|z1,...,2n) = 0. Then, as before,

Now,
1 « d =2 /
7 ; zie; 5 N(0,Q), Q= h;m E((gicisn)(@ithin))-
This covariance allows for both heteroskedasticity and autocorrelation in the
errors.
Under homoskedasticity, E(gigitn|21,...,2Zn) = E(€i€i1n), and the formula

simplifies to

“+oo
Q= Z E(6161+h)E($¢$;+h)

h=—oc0

If, in addition, we also have F(g;ei1n) = 0 for h # 0, then Q = o®E(x;x}).
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Autoregression

A simple dynamic model is
Yi = pyi-1 + &, E(eilyr, ..., yi-1) = 0.

Here the regressor (the lagged outcome) is not strictly exogenous but only
weakly exogenous.

Nonetheless,

E(yi—1ei) = Ep(yi-1(yi — pyi-1)) =0
and so least-squares continues to be consistent and asymptotically normal
(under the usual regularity conditions).

As

oo

yi=Y pcion,

h=0
weak exogeneity implies that the &; are uncorrelated.
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Autoregression with MA errors

An extension would be
Yi = pYi—1 + &4, € =mn; +60ni—1,
where n; ~ i.i.d. (0,0?%).
Now, least-squares is not consistent. Indeed,
E(yi-18:) = 007,
so the usual moment condition is no longer valid.
However, lack of higher-order correlation in the error does imply that
E(yi—ne;) =0, for all h > 2,

opening the way for an instrumental-variable approach.
The extension to higher-order MA processes is immediate.

Note that this approach does not work for autoregressive errors.
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Intertemporal CAPM

A consumer chooses consumption stream {z;} to maximize her expected
(discounted) utility stream

B g o u(zin; B)] 2:),
where u is a well-behaved utility function and z; is the information set at

baseline 1.

Optimality of the consumption path implies that, for all ¢, the Euler equation

aiu/(wi; B)dx; = ai+1u'(xi+1; B)rdx;

holds. Here, r is the asset return.
Hence,
E(aru(zit1; B)/w/ (xi; 8) — 1] 2:) =0

is a valid conditional moment condition for «, .
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NONPARAMETRIC PROBLEMS: CONDITIONAL-MEAN FUNCTIONS
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Hansen II, Chapters 19 and 20
Li and Racine, Chapters 1 and 2

Horowitz, Appendix
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Nonparametric specification

Let y; and x; be i.i.d. univariate random variables.

Suppose that
Yi = m(wt) + €4, E(5L|xz) =0.

We want to estimate m without imposing a functional form.
If ; takes values v1, ..., v for finite £ < n this is a parametric problem:
Regress y; on k dummy variables d; . = {z; = v}, i.e.,
k
Yi = Z dix Br + €i;
k=1
then B, = m(vx). Equivalently, for a fixed value = € {v1,...,v},

{l‘i = m} .
> {my =}

this is the slope of a regression of y; on d; ., or sample mean in the subsample
with z; = x.

m(z) = Zwi Yi, wi =
i=1
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Estimation based on binning

When z; is continuous the probability that it takes on any given value is
Zero.

We could estimate m(x) by the weighted average

@) = Sy — Azl <h}
Y Y PEEE

where h is some chosen positive number, the bandwidth.

This makes sense if we believe m is smooth, so that m(z) does not change
too fast when = changes little.

A small choice for the bandwidth h defines a small neighborhood and so
decreases bias. But it also increases variance as there will be less observations
‘close’ to x.
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Kernel functions

Binning yields a non-smooth estimator of m(z) (as a function of z). Which
may not be attractive.

A (second-order) kernel function is any (symmetric) non-negative and
bounded function k for which [k(u)du = 1, [uk(u)du = 0, and
Ju? k(u) du < oo.

Note that any probability density function with finite second moments can
be made to satisfy these requirements.

Commonly-used examples are

m Uniform : 3{|u| <1}

Triangular : (1 — |ul) {Ju| < 1}

» Epanechnikov : (1 —v?) {|u| < 1}
1 —u?/2

Gaussian: 7€
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A locally-constant estimator

A kernel estimator of m(z) is

n
mp(z) = Zwiyi, w; =
=1

This is the Nadaraya-Watson estimator.

The binning estimator is the special case that uses the uniform kernel.
Smooth choices for the kernel k deliver smooth estimators of m.

In practice the choice of h is far more important to the behavior of m; than
is the choice of k.

Note that m(z) solves the weighted least squares problem
n
minz w;i (ys — a)2
=1

with respect to a.
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The above optimization problem is equivalent to minimizing

EE(E) vt

As n grows this sample averages converges to its expectation, which equals

E(k (‘”;x) (yi;af) :E‘(k (“’”;x> E((ys —ha)zlwi)>

Let f be the density of 2; and g(x;) = E((y; — )| z;) f(x:). A change of
variable to u = (z; — x)/h and a second-order expansion around u = 0 show
the expectation to equal

fk(zzh—z) E((y;—o)? |z1,)f(zz) du; _fk u g(x—l—hu)du
= [k(u) (g(z) + hug'(z) + 1h*u?g" (u*)) du
where u* lies between u and zero.

Using the properties of the kernel function and assuming that |g”|ec < o0,

5 (k(xz}:x) (i 20)2) =E((yi — a)’|zi =x) f(z)+ O(h?).

. . ntoo
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Can also show that the variance is proportional to (nh)™!. So, if f is equally
well behaved, and f(z) > 0,

St —apt = EREEEI O 5 b (G- =)
i=1 i=1 h

if n — oo provided h — 0 and nh — oo.

The solution of this limit problem is, of course,
o = m(a),
justifying the Nadaraya-Watson estimator.

We have implicitely derived the nonparametric kernel density estimator

hie) = 23k (220

for f(x).

The conditions on h relative to n represent the bias/variance trade-off.
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As we need h — 0 the estimator m(z) will converge at a slower rate than
n~Y/? (the parametric rate).
We have

o*(x)

Vnh (1n () — m(z) — B b(z) [u® k(w) du) 4N (O, @) [k(u)? du) ,

where we let

UQ(m) =var(y;|z; = x) = E(Ef\ml — ),

be first-order bias and variance, respectively.

—2/5

The convergence rate can be no faster than n , which happens when bias

and standard deviation shrink at the same rate.

With the bias being O(h?) and the variance O((nh)™') bias vanishes if we
choose h such that nh® — 0.

This is called undersmoothing; it makes bias small relative to standard error.

Alternatives are bias correction or the use of higher-order kernels. Needed

to perform valid inference.
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A locally-linear estimator

Rather than a (weighted) regression on a constant alone we may equally fit
a linear approximation to m at x.

This amounts to estimating m(z) by the intercept in
n
min > w; (yi —a — (z; — x)B)°.

«@
B i=1

Although it has the same asymptotic behavior, such an estimator tends to
perform better than the standard kernel estimator.

In principle, there is no reason to stop at linearity.

Local polynomial regressions, where we add powers of (z; — ) as regressors,
are common practice.
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Bandwidth choice

A bandwidth that is ‘good’ (in an overall sense but not at a point) minimizes

JE((hn(z) —m(x))?) f (=) d,
the integrated (with respect to f) mean squared error.

This measure is unknown but can be estimated (up to a constant) by

71 Z mh )27
where 7hp(2;) is the leave-one-out estimator; for Nadaraya-Watson it equals
Tj—x;
Ej;ti k (]T> Yj
5 —Ty
ik (25

mp (CCZ) =

for example.
(Least-squares) cross-validation selects h by min, n™" S (g — (z:))2.

This can also be used to select between different estimators (pick the one
with lowest IMSE).
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Curse of dimensionality

Kernel estimators extend easily to the case where the conditioning variable
is the vector z; = (zi,1,...,Ti k)

It suffices to redefine k to be multivariate. A simple choice would be a kernel

of the form
Ti1— X1 Ti,w — Tk
( h )X X( T )

The main problem with multivariate regressors is that the variance of the
estimator now becomes inverse-proportional to n(h1 X - - - X hy). This implies
that the convergence rate decreases with . This is known as the curse of
dimensionality.

a product kernel.

There is a middle-ground between nonparametric and parametric that aims
to tackle this issue.
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Matching estimators

We wish to infer the average effect of a treatment on an outcome.

If treatment is randomly assigned,
0 = E(yildi = 1) — E(y:|d; = 0)
is the average treatment effect.

Estimate the effect by a least-squares regression on a constant and treatment
indicator.

Now suppose that treatment is only random conditional on a set of control
variables ;.

Then,

0= [(E(yildi = 1,zi = 2) — E(yildi = 0,z = x)) f(z)da.
Let mi(z) = E(yi|di = 1,z; = x) and mo(z) = E(yi|d; = 0,2; = z). Then
n! Z ma,n(xi) — 1o,n ()
i=1

is a nonparametric matching estimator of 6.
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Matching on the propensity score

Potential problem is limited overlap.

Well-known result says that matching on propensity score,
m(z) = P(d; = 1|z; = x),

is equivalent.

(Can estimate m nonparametrically and proceed as before but) a convenient
alternative follows from observation that

E(yidi|lzi = z) = E(yildi = 1,z; = z) m(x),
E(yi(1 = di)|zs = ) = E(ys|di = 0,z = z) (1 — m(z)),

so that we can write

0=E< yids _yi(l—di)>.

m(z;) 1—m(z;)

Still important to have the propensity vary over entire (0, 1) for identification.
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Regression discontinuity

Now suppose treatment is assigned according to

d — 0 ifx;<e
Tl 1 ifa;>c

where the (continuous) running variable z; cannot be manipulated and c is
a known cut-off value.

Identifying assumption is that people around the cut-off are comparable. Can
then identify the local treatment effect

0= hinE(y,|dz = 1,1}1' = CC) — 11#nE(y,|dz = O, Xr; = 1‘)
at the cut-off.

Natural is to fit separate nonparametric regressions to the left and right of
cut-off. Using a rectangular kernel, for example, we use observations in the
regions [c — h, c] and [c, ¢ + h] only.

Locally-linear estimators are preferable here as they have better properties
at the boundary.
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Semiparametric binary choice

Consider the binary-choice model
yi = {210 > &:}, e ~ iid. F,

where, now F', is unknown.

A semiparametric maximum-likelihood estimator is the maximizer of
S wilog(F(z0)) + (1 — i) log(1 - F(x16))
i=1

(where we ignore issues of trimming) for

2k (550

zl0—a’6

F(a{0) =
: Ej;éi k (dh;)
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Examples of program evaluation
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